...
【24h】

Quantitative metric theory of continued fractions

机译:连续分数的定量度量理论

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Quantitative versions of the central results of the metric theory of continued fractions were given primarily by C. De Vroedt. In this paper we give improvements of the bounds involved . For a real number e?‘¥, let$$x=c_0+dfrac{1}{c_1+dfrac{1}{c_2+dfrac{1}{c_3+dfrac{1}{c_4+_ddots}}}}.$$A sample result we prove is that given $epsilon 0$,$$(c_1(x)cdots c_n(x))^{frac{1}{n}}=prod^infty_{k=1}left( 1+frac{1}{k(k+2)} ight)^{frac{log , k}{log , 2}}+oleft(n^{-frac{1}{2}}(log , n)^{frac{3}{2}}(log , log , n)^{frac{1}{2}+epsilon} ight)$$
机译:连续分数度量理论的主要结果的定量版本主要由C. De Vroedt给出。在本文中,我们对涉及的范围进行了改进。对于实数e?'¥,设$$ x = c_0 + dfrac {1} {c_1 + dfrac {1} {c_2 + dfrac {1} {c_3 + dfrac {1} {c_4 + _ddots}}}}。 $$我们的样本结果证明了给定$ epsilon> 0 $,$$(c_1(x)cdots c_n(x))^ {frac {1} {n}} = prod ^ infty_ {k = 1} left( 1 + frac {1} {k(k + 2)}权)^ {frac {log,k} {log,2}} + oleft(n ^ {-frac {1} {2}}(log,n) ^ {frac {3} {2}}(log,log,n)^ {frac {1} {2} + epsilon} ight)$$

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号