首页> 外文期刊>Propulsion and Power Research >Model validation and parametric study of fluid flows and heat transfer of aviation kerosene with endothermic pyrolysis at supercritical pressure
【24h】

Model validation and parametric study of fluid flows and heat transfer of aviation kerosene with endothermic pyrolysis at supercritical pressure

机译:航空煤油超临界压力下吸热裂解的流动与传热模型验证及参数研究

获取原文
       

摘要

The regenerative cooling technology is a promising approach for effective thermal protection of propulsion and power-generation systems. A mathematical model has been used to examine fluid flows and heat transfer of the aviation kerosene RP-3 with endothermic fuel pyrolysis at a supercritical pressure of 5MPa. A pyrolytic reaction mechanism, which consists of 18 species and 24 elementary reactions, is incorporated to account for fuel pyrolysis. Detailed model validations are conducted against a series of experimental data, including fluid temperature, fuel conversion rate, various product yields, and chemical heat sink, fully verifying the accuracy and reliability of the model. Effects of fuel pyrolysis and inlet flow velocity on flow dynamics and heat transfer characteristics of RP-3 are investigated. Results reveal that the endothermic fuel pyrolysis significantly improves the heat transfer process in the high fluid temperature region. During the supercritical-pressure heat transfer process, the flow velocity significantly increases, caused by the drastic variations of thermophysical properties. Under all the tested conditions, the Nusselt number initially increases, consistent with the increased flow velocity, and then slightly decreases in the high fluid temperature region, mainly owing to the decreased heat absorption rate from the endothermic pyrolytic chemical reactions.
机译:再生冷却技术是对推进系统和发电系统进行有效热保护的一种有前途的方法。数学模型已用于检查航空煤油RP-3的流体流动和传热,并在5MPa的超临界压力下进行吸热燃料热解。包含了18种和24个基本反应的热解反应机理被纳入到燃料热解中。针对一系列实验数据进行了详细的模型验证,包括流体温度,燃料转化率,各种产品产量和化学散热片,从而充分验证了模型的准确性和可靠性。研究了燃料热解和入口流速对RP-3流动动力学和传热特性的影响。结果表明,吸热燃料的热解显着改善了高温流体区域的传热过程。在超临界压力传热过程中,由于热物理性质的急剧变化而导致流速显着增加。在所有测试条件下,Nusselt数首先增加,与增加的流速一致,然后在高流体温度区域中略有下降,这主要是由于吸热热解化学反应的吸热率降低所致。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号