首页> 外文期刊>Progress in Earth and Planetary Science >Nitrogen in the Earth: abundance and transport
【24h】

Nitrogen in the Earth: abundance and transport

机译:地球上的氮:丰度和迁移

获取原文
           

摘要

The terrestrial nitrogen budget, distribution, and evolution are governed by biological and geological recycling. The biological cycle provides the nitrogen input for the geological cycle, which, in turn, feeds some of the nitrogen into the Earth’s interior. A portion of the nitrogen also is released back to the oceans and the atmosphere via N~(2)degassing. Nitrogen in silicate minerals (clay minerals, mica, feldspar, garnet, wadsleyite, and bridgmanite) exists predominantly as NH~(4)_(+). Nitrogen also is found in graphite and diamond where it occurs in elemental form. Nitrides are stable under extremely reducing conditions such as those that existed during early planetary formation processes and may still persist in the lower mantle. From experimentally determined nitrogen solubility in such materials, the silicate Earth is nitrogen undersaturated. The situation for the core is more uncertain, but reasonable Fe metal/silicate nitrogen partition coefficients (>?10) would yield nitrogen contents sufficient to account for the apparent nitrogen deficiency in the silicate Earth compared with other volatiles. Transport of nitrogen takes place in silicate melt (magma), water-rich fluids, and as a minor component in silicate minerals. In melts, the N solubility is greater for reduced nitrogen, whereas the opposite appears to be the case for N solubility in fluids. Reduced nitrogen species (NH~(3), NH~(2)_(?), and NH~(2)_(+)) dominate in most environments of the modern Earth’s interior except the upper ~?100?km of subduction zones where N~(2)is the most important species. Nitrogen in magmatic liquids in the early Earth probably was dominated by NH~(3)and NH~(2)_(?), whereas in the modern Earth, the less reduced, NH~(2)_(+)functional group is more common. N~(2)is common in magmatic liquids in subduction zones. Given the much lower solubility of N~(2)in magmatic liquids compared with other nitrogen species, nitrogen dissolved as N~(2)in subduction zone magmas is expected to be recycled and returned to the oceans and the atmosphere, whereas nitrogen in reduced form(s) likely would be transported to greater depths. This solubility difference, controlled primarily by variations in redox conditions, may be a factor resulting in increased nitrogen in the Earth’s mantle and decreasing abundance in its oceans and atmosphere during the Earth’s evolution. Such an abundance evolution has resulted in the decoupling of nitrogen distribution in the solid Earth and the hydrosphere and atmosphere.
机译:陆地氮的预算,分布和演化受生物和地质循环利用的支配。生物循环为地质循环提供了氮输入,而地质循环又将一些氮供入了地球内部。一部分氮也通过N〜(2)脱气释放回海洋和大气中。硅酸盐矿物(粘土矿物,云母,长石,石榴石,沃兹利石和水辉石)中的氮主要以NH〜(4)_(+)的形式存在。氮也以元素形式存在于石墨和金刚石中。氮化物在极端还原的条件下(例如在早期行星形成过程中存在的条件)是稳定的,并且可能仍然存在于下地幔中。从实验确定的氮在此类材料中的溶解度来看,硅酸盐地球是氮不饱和的。堆芯的情况更加不确定,但是合理的铁金属/硅酸盐氮分配系数(>?10)将产生足以解释与其他挥发物相比在硅酸盐土中表观氮缺乏的氮含量。氮的运输发生在硅酸盐熔体(岩浆),富水流体中,并作为硅酸盐矿物中的次要成分。在熔体中,氮的溶解度越高,还原的氮就越大,而氮在流体中的溶解度似乎相反。还原氮物种(NH〜(3),NH〜(2)_(?)和NH〜(2)_(+))在现代地球内部的大多数环境中占主导地位,俯冲的最高〜100?km处除外N〜(2)是最重要的物种。早期地球岩浆中的氮可能由NH〜(3)和NH〜(2)_(?)占主导,而在现代地球中,还原程度较小的NH〜(2)_(+)官能团是比较普遍;普遍上。 N〜(2)在俯冲带的岩浆中很常见。鉴于N〜(2)在岩浆液中的溶解度比其他氮物种低得多,预计氮在俯冲带岩浆中作为N〜(2)溶解的氮将被回收并返回到海洋和大气中,而氮则以形式可能会被运输到更大的深度。这种溶解度差异主要由氧化还原条件的变化控制,可能是导致地球地幔中氮含量增加以及地球演化过程中海洋和大气中丰度降低的一个因素。这种丰度的演变导致了固体地球以及水圈和大气层中氮分布的解耦。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号