首页> 外文期刊>Processes >Life Cycle Network Modeling Framework and Solution Algorithms for Systems Analysis and Optimization of the Water-Energy Nexus
【24h】

Life Cycle Network Modeling Framework and Solution Algorithms for Systems Analysis and Optimization of the Water-Energy Nexus

机译:水能联动系统的生命周期网络建模框架和解决方案算法

获取原文
           

摘要

The water footprint of energy systems must be considered, as future water scarcity has been identified as a major concern. This work presents a general life cycle network modeling and optimization framework for energy-based products and processes using a functional unit of liters of water consumed in the processing pathway. We analyze and optimize the water-energy nexus over the objectives of water footprint minimization, maximization of economic output per liter of water consumed (economic efficiency of water), and maximization of energy output per liter of water consumed (energy efficiency of water). A mixed integer, multiobjective nonlinear fractional programming (MINLFP) model is formulated. A mixed integer linear programing (MILP)-based branch and refine algorithm that incorporates both the parametric algorithm and nonlinear programming (NLP) subproblems is developed to boost solving efficiency. A case study in bioenergy is presented, and the water footprint is considered from biomass cultivation to biofuel production, providing a novel perspective into the consumption of water throughout the value chain. The case study, optimized successively over the three aforementioned objectives, utilizes a variety of candidate biomass feedstocks to meet primary fuel products demand (ethanol, diesel, and gasoline). A minimum water footprint of 55.1 ML/year was found, economic efficiencies of water range from −$1.31/L to $0.76/L, and energy efficiencies of water ranged from 15.32 MJ/L to 27.98 MJ/L. These results show optimization provides avenues for process improvement, as reported values for the energy efficiency of bioethanol range from 0.62 MJ/L to 3.18 MJ/L. Furthermore, the proposed solution approach was shown to be an order of magnitude more efficient than directly solving the original MINLFP problem with general purpose solvers.
机译:必须考虑能源系统的水足迹,因为未来的水资源短缺已被确定为主要问题。这项工作提出了一个通用的生命周期网络建模和优化框架,该框架使用处理路径中消耗的水升的功能单位,对基于能源的产品和过程进行了建模。我们在水足迹最小化,每升水消耗的经济产出(水的经济效率)和每升水消耗的能源输出(水的能源效率)的最大化目标上分析和优化水能关系。建立了混合整数,多目标非线性分数规划(MINLFP)模型。为了提高求解效率,开发了一种基于混合整数线性规划(MILP)的分支和优化算法,该算法结合了参数算法和非线性规划(NLP)子问题。提出了一个生物能源案例研究,并考虑了从生物量耕种到生物燃料生产的水足迹,从而为整个价值链中的水消耗提供了新颖的视角。为实现上述三个目标而进行了优化的案例研究,利用了多种候选生物质原料来满足主要燃料产品需求(乙醇,柴油和汽油)。发现最小水足迹为55.1 ML /年,水的经济效率范围为-$ 1.31 / L至$ 0.76 / L,水的能量效率范围为15.32 MJ / L至27.98 MJ / L。这些结果表明优化为工艺改进提供了途径,因为报告的生物乙醇能效值介于0.62 MJ / L至3.18 MJ / L之间。此外,与使用通用求解器直接解决原始MINLFP问题相比,所提出的解决方案方法显示出效率高一个数量级。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号