...
首页> 外文期刊>Procedia Manufacturing >Two-stage Finite Element Simulation to Predict Deformation and Stresses in Electromagnetic Formed Component
【24h】

Two-stage Finite Element Simulation to Predict Deformation and Stresses in Electromagnetic Formed Component

机译:预测电磁成形零件变形和应力的两阶段有限元模拟

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Magnesium and Aluminium alloys are desirable for the automotive and electronic appliances industries due to their high strength-to-weight ratio, corrosion resistance and weldability. However applications of the Magnesium and Aluminium alloys were very difficult due to their very low formability at room temperature, despite their advantages. One of the high speed forming technologies like Electromagnetic Metal Forming (EMF), can be a useful forming method for low formability light-weight materials such as aluminium and magnesium alloys in overcoming the limitations of conventional forming methods. EMF process refers to the high velocity and high strain rate deformation of low-formability materials driven by electromagnetic forces that are generated by the rapid discharge current through forming coil. This technology depends on the properties of the sheet metal, as well as the process parameters such as electromagnetic force in a practical forming operation which in turn depends on selection of proper shape of forming coil to get uniform and high magnitude electromagnetic force for achieving the desired deformation of the sheet. Therefore, the purpose of this research effort is to analyse the dynamic behaviour of work piece under various forming coil shapes with Magnesium alloys or composite. To achieve these objectives, Finite Element Method in two steps is used. In stage one the Electromagnetic force on the component will be estimated using ANSYS Emag/EM module of LS DYNA/ABAQUS for different combinations of the process parameters like current density, gap between coil and sheet, coil shape and the coil thickness etc. followed by application of an Optimization technique to find the best combination. The obtained force will then be applied on the component and the corresponding deformation and other performance parameters will be obtained using ANSYS Structural in second stage. The stage one numerical results are compared with analytical results to check the correctness of the developed simulated environment.
机译:镁和铝合金由于其高的重量重量比,耐腐蚀性和可焊接性而对于汽车和电子电器行业而言是理想的。然而,尽管镁和铝合金具有优势,但由于它们在室温下的可成型性很低,因此应用非常困难。诸如电磁金属成形(EMF)之类的高速成形技术之一,对于克服了传统成形方法的局限性,对于诸如铝和镁合金之类的低成形性轻质材料而言,可能是一种有用的成形方法。 EMF过程是指由电磁力驱动的低成形性材料的高速度和高应变速率变形,电磁力是由通过成形线圈的快速放电电流产生的。该技术取决于钣金的特性以及实际成型操作中的工艺参数(例如电磁力),而工艺参数又取决于选择合适的成型线圈形状以获得均匀且高强度的电磁力以实现所需的期望值片材变形。因此,本研究的目的是分析镁合金或复合材料在各种成形线圈形状下工件的动态行为。为了实现这些目标,分两步使用了有限元法。在第一阶段,将使用LS DYNA / ABAQUS的ANSYS Emag / EM模块估算组件上的电磁力,以得到不同的工艺参数组合,例如电流密度,线圈与薄板之间的间隙,线圈形状和线圈厚度等,然后是应用优化技术以找到最佳组合。然后将获得的力施加到部件上,并在第二阶段使用ANSYS Structural获得相应的变形和其他性能参数。将第一阶段的数值结果与分析结果进行比较,以检查开发的模拟环境的正确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号