首页> 外文期刊>Pramana >Effect of ferromagnetic exchange field on band gap and spin polarisation of graphene on a TMD substrate
【24h】

Effect of ferromagnetic exchange field on band gap and spin polarisation of graphene on a TMD substrate

机译:铁磁交换场对TMD衬底上石墨烯的带隙和自旋极化的影响

获取原文
       

摘要

We calculate the electronic band dispersion of graphene monolayer on a two-dimensional transition metal dichalcogenide substrate (GrTMD) around $f{K}$ and $f{K'}$ points by taking into account the interplay of the ferromagnetic impurities and the substrate-induced interactions. The latter are (strongly enhanced) intrinsic spina??orbit interaction (SOI), the extrinsic Rashba spina??orbit interaction (RSOI) and the one related to the transfer of the electronic charge from graphene to substrate. We introduce exchange field $(M)$ in the Hamiltonian to take into account the deposition of magnetic impurities on the graphene surface. The cavalcade of the perturbations yield particlea??hole symmetric band dispersion with an effective Zeeman field due to the interplay of the substrate-induced interactions with RSOI as the prime player. Our graphical analysis with extremely low-lying states strongly suggests the following: The GrTMDs, such as graphene on $m{WY_2}$, exhibit (direct) band-gap narrowing/widening (Mossa??Burstein (MB) gap shift) including the increase in spin polarisation $(P)$ at low temperature due to the increase in the exchange field $(M)$ at the Dirac points. The polarisation is found to be electric field tunable as well. Finally, there is anticrossing of non-parabolic bands with opposite spins, the gap closing with same spins, etc. around the Dirac points. A direct electric field control of magnetism at the nanoscale is needed here. The magnetic multiferroics, like $m{BiFeO_{3}}$ (BFO), are useful for this purpose due to the coupling between the magnetic and electric order parameters.
机译:我们通过考虑铁磁杂质和底物诱导的相互作用。后者是(强烈增强的)内在的棘突-轨道相互作用(SOI),外在的Rashba棘突-轨道相互作用(RSOI)以及与电荷从石墨烯到衬底的转移有关的过程。我们在哈密顿量中引入交换场$(M)$,以考虑磁性杂质在石墨烯表面上的沉积。由于底物诱导的相互作用与作为主要参与者的RSOI的相互作用,扰动的行列产生具有有效塞曼场的粒子-孔对称带分散。我们用低洼状态进行的图形分析强烈建议以下内容:GrTMD,例如$ rm {WY_2} $上的石墨烯,表现出(直接)带隙变窄/变宽(Mossa ?? Burstein(MB)间隙移动)包括由于Dirac点处交换场$(M)$的增加而导致的低温下自旋极化$(P)$的增加。发现极化也是电场可调的。最后,在Dirac点周围存在具有相反自旋的非抛物线带的反交叉,具有相同自旋的间隙闭合等。这里需要在纳米尺度上对磁场进行直接电场控制。磁性多铁磁,例如$ rm {BiFeO_ {3}} $(BFO),由于磁性和电有序参数之间的耦合而用于此目的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号