首页> 外文期刊>PLoS Genetics >Microsatellite Interruptions Stabilize Primate Genomes and Exist as Population-Specific Single Nucleotide Polymorphisms within Individual Human Genomes
【24h】

Microsatellite Interruptions Stabilize Primate Genomes and Exist as Population-Specific Single Nucleotide Polymorphisms within Individual Human Genomes

机译:微卫星干扰稳定了灵长类动物的基因组,并作为单个人类基因组中特定于人群的单核苷酸多态性存在。

获取原文
           

摘要

Interruptions of microsatellite sequences impact genome evolution and can alter disease manifestation. However, human polymorphism levels at interrupted microsatellites (iMSs) are not known at a genome-wide scale, and the pathways for gaining interruptions are poorly understood. Using the 1000 Genomes Phase-1 variant call set, we interrogated mono-, di-, tri-, and tetranucleotide repeats up to 10 units in length. We detected ~26,000–40,000 iMSs within each of four human population groups (African, European, East Asian, and American). We identified population-specific iMSs within exonic regions, and discovered that known disease-associated iMSs contain alleles present at differing frequencies among the populations. By analyzing longer microsatellites in primate genomes, we demonstrate that single interruptions result in a genome-wide average two- to six-fold reduction in microsatellite mutability, as compared with perfect microsatellites. Centrally located interruptions lowered mutability dramatically, by two to three orders of magnitude. Using a biochemical approach, we tested directly whether the mutability of a specific iMS is lower because of decreased DNA polymerase strand slippage errors. Modeling the adenomatous polyposis coli tumor suppressor gene sequence, we observed that a single base substitution interruption reduced strand slippage error rates five- to 50-fold, relative to a perfect repeat, during synthesis by DNA polymerases α, β, or η. Computationally, we demonstrate that iMSs arise primarily by base substitution mutations within individual human genomes. Our biochemical survey of human DNA polymerase α, β, δ, κ, and η error rates within certain microsatellites suggests that interruptions are created most frequently by low fidelity polymerases. Our combined computational and biochemical results demonstrate that iMSs are abundant in human genomes and are sources of population-specific genetic variation that may affect genome stability. The genome-wide identification of iMSs in human populations presented here has important implications for current models describing the impact of microsatellite polymorphisms on gene expression. Author Summary Microsatellites are short tandem repeat DNA sequences located throughout the human genome that display a high degree of inter-individual variation. This characteristic makes microsatellites an attractive tool for population genetics and forensics research. Some microsatellites affect gene expression, and mutations within such microsatellites can cause disease. Interruption mutations disrupt the perfect repeated array and are frequently associated with altered disease risk, but they have not been thoroughly studied in human genomes. We identified interrupted mono-, di-, tri- and tetranucleotide MSs (iMS) within individual genomes from African, European, Asian and American population groups. We show that many iMSs, including some within disease-associated genes, are unique to a single population group. By measuring the conservation of microsatellites between human and chimpanzee genomes, we demonstrate that interruptions decrease the probability of microsatellite mutations throughout the genome. We demonstrate that iMSs arise in the human genome by single base changes within the DNA, and provide biochemical data suggesting that these stabilizing changes may be created by error-prone DNA polymerases. Our genome-wide study supports the model in which iMSs act to stabilize individual genomes, and suggests that population-specific differences in microsatellite architecture may be an avenue by which genetic ancestry impacts individual disease risk.
机译:微卫星序列的中断会影响基因组进化,并可能改变疾病的表现。但是,在全基因组范围内,在中断的微卫星(iMS)处的人类多态性水平尚不清楚,并且获得中断的途径知之甚少。使用1000个Genomes Phase-1变异呼叫集,我们询问了长达10个单位的单核苷酸,二核苷酸,三核苷酸和四核苷酸重复序列。我们在四个人口群体(非洲,欧洲,东亚和美国)中的每个人口中检测到了约26,000–40,000个iMS。我们确定了外显子区域内的特定人群的iMS,并发现已知的疾病相关iMS包含等位基因在人群中以不同的频率存在。通过分析灵长类动物基因组中更长的微卫星,我们证明与完美的微卫星相比,单次中断导致全基因组范围内微卫星变异性平均降低了2到6倍。位于中心的中断将可变性大大降低了两到三个数量级。使用生化方法,我们直接测试了特定iMS的变异性是否由于DNA聚合酶链滑移错误的减少而降低了。通过对腺瘤性息肉病大肠杆菌抑癌基因序列进行建模,我们观察到单碱基取代中断可在DNA聚合酶α,β或η合成过程中将链滑移错误率降低至相对于完美重复的5至50倍。通过计算,我们证明了iMS主要是由单个人类基因组内的碱基取代突变引起的。我们对某些微卫星内人类DNA聚合酶α,β,δ,κ和η错误率的生化调查表明,低保真聚合酶最常造成干扰。我们的综合计算和生化结果表明,iMS在人类基因组中丰富,并且是可能影响基因组稳定性的特定人群遗传变异的来源。本文介绍的人类群体中iMS的全基因组鉴定对当前描述微卫星多态性对基因表达影响的模型具有重要意义。作者摘要微卫星是位于整个人类基因组中的短串联重复DNA序列,显示出高度的个体差异。这种特性使微卫星成为进行人口遗传学和法医学研究的有吸引力的工具。一些微卫星会影响基因表达,并且此类微卫星内的突变会导致疾病。中断突变破坏了完美的重复序列,并经常与疾病风险的改变相关,但尚未在人类基因组中进行深入研究。我们在非洲,欧洲,亚洲和美洲人口群体的单个基因组中鉴定了单核苷酸,二核苷酸,三核苷酸和四核苷酸的间断性质谱(iMS)。我们显示,许多iMS,包括与疾病相关的基因中的一些,对于单个人群而言是唯一的。通过测量人类和黑猩猩基因组之间微卫星的保守性,我们证明了干扰降低了整个基因组中微卫星突变的可能性。我们证明iMS通过DNA内的单碱基变化在人基因组中出现,并提供生化数据表明这些稳定的变化可能是由易错的DNA聚合酶产生的。我们的全基因组研究支持iMS用于稳定单个基因组的模型,并表明微卫星结构中特定于群体的差异可能是遗传途径影响单个疾病风险的途径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号