首页> 外文期刊>PLoS Genetics >A systems biology approach uncovers the core gene regulatory network governing iridophore fate choice from the neural crest
【24h】

A systems biology approach uncovers the core gene regulatory network governing iridophore fate choice from the neural crest

机译:系统生物学方法揭示了控制神经纹rest虹膜命运选择的核心基因调控网络

获取原文
获取外文期刊封面目录资料

摘要

Multipotent neural crest (NC) progenitors generate an astonishing array of derivatives, including neuronal, skeletal components and pigment cells (chromatophores), but the molecular mechanisms allowing balanced selection of each fate remain unknown. In zebrafish, melanocytes, iridophores and xanthophores, the three chromatophore lineages, are thought to share progenitors and so lend themselves to investigating the complex gene regulatory networks (GRNs) underlying fate segregation of NC progenitors. Although the core GRN governing melanocyte specification has been previously established, those guiding iridophore and xanthophore development remain elusive. Here we focus on the iridophore GRN, where mutant phenotypes identify the transcription factors Sox10, Tfec and Mitfa and the receptor tyrosine kinase, Ltk, as key players. Here we present expression data, as well as loss and gain of function results, guiding the derivation of an initial iridophore specification GRN. Moreover, we use an iterative process of mathematical modelling, supplemented with a Monte Carlo screening algorithm suited to the qualitative nature of the experimental data, to allow for rigorous predictive exploration of the GRN dynamics. Predictions were experimentally evaluated and testable hypotheses were derived to construct an improved version of the GRN, which we showed produced outputs consistent with experimentally observed gene expression dynamics. Our study reveals multiple important regulatory features, notably a sox10 -dependent positive feedback loop between tfec and ltk driving iridophore specification; the molecular basis of sox10 maintenance throughout iridophore development; and the cooperation between sox10 and tfec in driving expression of pnp4a , a key differentiation gene. We also assess a candidate repressor of mitfa , a melanocyte-specific target of sox10 . Surprisingly, our data challenge the reported role of Foxd3, an established mitfa repressor, in iridophore regulation. Our study builds upon our previous systems biology approach, by incorporating physiologically-relevant parameter values and rigorous evaluation of parameter values within a qualitative data framework, to establish for the first time the core GRN guiding specification of the iridophore lineage. Author summary Multipotent neural crest (NC) progenitors generate an astonishing array of derivatives, including neuronal, skeletal components and pigment cells, but the molecular mechanisms allowing balanced selection of each fate remain unknown. In zebrafish, melanocytes, iridophores and xanthophores, the three chromatophore lineages, are thought to share progenitors and so lend themselves to investigating the complex gene regulatory networks (GRNs) underlying fate segregation of NC progenitors. Although the core GRN governing melanocyte specification has been previously established, those guiding iridophore and xanthophore development remain elusive. Here we present expression data, as well as loss and gain of function results, guiding the derivation of a core iridophore specification GRN. Moreover, we use a process of mathematical modelling and rigorous computational exploration of the GRN to predict gene expression dynamics, assessing them by criteria suited to the qualitative nature of our current understanding of iridophore development. Predictions were experimentally evaluated and testable hypotheses were derived to construct an improved version of the GRN, which we showed produced outputs consistent with experimentally observed gene expression dynamics. The core iridophore GRN defined here is a key stepping stone towards exploring how chromatophore fate decisions are made in multipotent NC progenitors.
机译:多能神经c(NC)祖细胞产生一系列惊人的衍生物,包括神经元,骨骼成分和色素细胞(色素细胞),但尚不知道允许平衡选择每种命运的分子机制。在斑马鱼中,黑色素细胞,虹膜细胞和黄体细胞是这三种染色体的谱系,被认为具有共同的祖细胞,因此有助于研究潜在的NC祖细胞分离的复杂基因调控网络(GRN)。尽管先前已经确定了控制黑素细胞规范的核心GRN,但那些指导虹吸虫和黄体细胞发育的方法仍然难以捉摸。在这里,我们关注虹膜虹膜GRN,突变体表型将转录因子Sox10,Tfec和Mitfa以及受体酪氨酸激酶Ltk识别为关键参与者。在这里,我们介绍了表达数据,以及函数结果的损失和获得,指导了初始虹彩载体规范GRN的推导。此外,我们使用数学建模的迭代过程,再加上适合于实验数据定性性质的蒙特卡洛筛选算法,以便对GRN动力学进行严格的预测性探索。对预测进行了实验评估,得出了可检验的假设以构建GRN的改进版本,我们证明了产生的输出与实验观察到的基因表达动态一致。我们的研究揭示了多个重要的调控特征,特别是在tfec和ltk驱动虹吸膜规格之间的一个与sox10相关的正反馈回路。整个虹吸虫发展过程中维持sox10的分子基础;以及sox10和tfec之间的合作来驱动关键分化基因pnp4a的表达。我们还评估了mitfa的候选阻遏物,mitfa是sox10的黑素细胞特异性靶标。令人惊讶的是,我们的数据挑战了已报道的mitfa阻遏物Foxd3在虹膜虹膜调节中的作用。我们的研究建立在我们以前的系统生物学方法的基础上,通过将与生理相关的参数值和对参数值的严格评估纳入定性数据框架,首次建立了虹彩细胞谱系的核心GRN指导规范。作者摘要多能神经c(NC)祖细胞产生一系列惊人的衍生物,包括神经元,骨骼成分和色素细胞,但是尚不清楚平衡每种命运的分子机制。在斑马鱼中,黑色素细胞,虹膜细胞和黄体细胞是这三种染色体的谱系,被认为具有共同的祖细胞,因此有助于研究潜在的NC祖细胞分离的复杂基因调控网络(GRN)。尽管先前已经确定了控制黑素细胞规范的核心GRN,但那些指导虹吸虫和黄体细胞发育的方法仍然难以捉摸。在这里,我们介绍表达数据,以及函数结果的丢失和获得,指导核心虹膜虹膜规范GRN的推导。此外,我们使用数学模型和对GRN进行严格的计算探索的过程来预测基因表达动态,并通过适合于我们对虹膜虹膜发展当前了解的定性性质的标准对其进行评估。对预测进行了实验评估,得出了可检验的假设以构建GRN的改进版本,我们证明了产生的输出与实验观察到的基因表达动态一致。此处定义的核心虹吸体GRN是探索如何在多能NC祖细胞中做出染色体命运决定的关键踏脚石。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号