首页> 外文期刊>PLoS Genetics >Response to the Formal Letter of Z. Chrzanowska-Lightowlers and R. N. Lightowlers Regarding Our Article “Ribosome Rescue and Translation Termination at Non-Standard Stop Codons by ICT1 in Mammalian Mitochondria”
【24h】

Response to the Formal Letter of Z. Chrzanowska-Lightowlers and R. N. Lightowlers Regarding Our Article “Ribosome Rescue and Translation Termination at Non-Standard Stop Codons by ICT1 in Mammalian Mitochondria”

机译:对Z. Chrzanowska-Lightowlers和R.N. Lightowlers的正式信的答复:关于我们的文章“哺乳动物线粒体中ICT1在非标准终止密码子处的核糖体拯救和翻译终止”

获取原文
           

摘要

Introduction Most deviations from the universal genetic code exist in the mitochondrial translation system. In human mitochondria, two arginine codons, AGA and AGG, have no cognate tRNAs; mtDNA-encoded cytochrome c oxidase subunit I ( MTCO1 ) and NADH dehydrogenase 6 ( MTND6 ) carry AGA and AGG codons at the end of their mRNAs, respectively. We previously demonstrated in vitro the possible engagement of ICT1 in the translation termination at non-standard stop codons of MTCOI and MTND6 mRNAs. On the other hand, Temperley and colleagues proposed in 2010 that human mitoribosomes invoke a -1 frameshift at the terminal AGA/AGG codons placing standard UAG stop codon in the ribosomal A-site. As consequence, only a single release factor, mtRF1a/RF1Lmt, would be used in mitochondria. Here we revisit the frameshift model and explain the view that ICT1 is presently a plausible candidate for the termination factor for non-standard stop codon in human mitochondria. Response We previously demonstrated in vitro that the mitochondrial factor ICT1 is possibly involved in the translation termination at non-standard termination codons AGA and AGG of two mitochondrial ORFs, MTCOI and MTND6 , respectively [ 1 ]. These findings challenged the in vivo data by Temperley et al., who proposed a -1 frameshift at the terminal AGA and AGG codons in MTCOI and MTND6 [ 2 ]. As a consequence, both ORFs terminate in the standard UAG codon, thus using only a single release factor, mtRF1a/RF1Lmt, in mitochondria [ 3 , 4 ]. This model would imply that ICT1 is not necessary and is not involved in the termination of MTCOI and MTND6 , since mtRF1a/RF1Lmt acts more predominantly than ICT1 at the standard UAG stop codon [ 1 ]. Here we would like to revisit the frameshift model and the mechanism of translation termination at non-standard stop codon in human mitochondria. Bacterial RelE is thought to show sequence preference for standard termination codons UAG and UAA and negligible recognition of AGA and AGG An elegant technique was applied, demonstrating -1 frameshifting in human mitochondria: the bacterial RelE, an endoribonuclease that specifically cleaves mRNA in the ribosomal A-site, was targeted to mitochondria (mtRelE) [ 2 ]. In vitro studies revealed that RelE induced cleavage most commonly after the second nucleotide of the A-site codon [ 5 ]. The mtRelE cleavage occurred in MTCO1 mRNAs uniquely between nucleotides A and G (U A|GA), suggesting a -1 frameshift with the UAG codon at the A-site. There are two problems with this interpretation. (i) An extensive in vivo study analyzed 196 cleavage sites and observed a very modest sequence and site specificity: slightly more cuts were observed after a codon than between the second and third nucleotide of an A-site codon; 64% of the cleaved codons ended with a G or C, in 40% of the cases the cleavage occurred before or after a G [ 6 ]. In vitro study demonstrated that the bacterial RelE cleaves mRNA with high codon specificity with preference for the stop codon UAG, while the recognition of AGA codon is below the detection limit [ 5 ]. Structural study revealed that binding of RelE to ribosomal A-site reorganizes the mRNA of the A-site. Stacking of A-site codon bases with conserved residues in RelE and 16S rRNA explains the sequence specificity of the reaction, preference for pyrimidines in the first position of the codon, and purines in positions two and three [ 5 , 7 ]. Altogether, these data suggest that a RelE cleavage pattern cannot be taken as a proof for an A-site location of a codon as Temperley et al. do [ 2 ]. (ii) A -1 frameshift will only shift a UAG stop codon into the A-site, if the terminal AGA/AGG codon is preceded by a U nucleotide. This is not the case in most of the vertebrates, i.e., a -1 frameshift in the mitochondrial mRNAs is not universal. Furthermore, in Oryctolagus cuniculus (rabbit) the two terminal codons for CYTB and ND6 are UGA AGG and GCU AGG [ 8 ]; should in the first case ICT1 make the termination job, and in the second a -1 frameshift in cooperation with RF1Lmt/mtRF1a? We think it would be important first to examine the codon specificity of RelE on 55S mitoribosome, before it is established that human mitoribosomes invoke frameshifting. The elements that promote -1 frameshift are ambiguously identified in COI and ND6 mRNAs Particular elements that promote classical frameshifting have been well characterized in other systems [ 9 – 11 ]. These include (i) a ribosome that has paused or stalled as a consequence of either a rare or slowly decoded codon, (ii) an upstream heptapeptide “slippery sequence” followed by an inhibitory secondary structure downstream, and (iii) only an inhibitory secondary structure downstream from the frameshift site. In this regard, Temperley and colleagues invoked the following features that should provoke a -1 frameshifting in MTCOI/MTND6 mRNA: (a) mitoribosomes stalling at AGA/AGG codons for which there are no cognate mt-tRNAs, potentiall
机译:简介与通用遗传密码的大多数差异都存在于线粒体翻译系统中。在人类线粒体中,两个精氨酸密码子AGA和AGG没有同源的tRNA。 mtDNA编码的细胞色素C氧化酶亚基I(MTCO1)和NADH脱氢酶6(MTND6)在其mRNA的末端分别带有AGA和AGG密码子。我们以前在体外证明了ICT1可能参与MTCOI和MTND6 mRNA非标准终止密码子的翻译终止。另一方面,Temperley及其同事在2010年提出,人类的线粒体在末端AGA / AGG密码子处调用-1移码,将标准UAG终止密码子置于核糖体A位点。结果,线粒体中仅使用单个释放因子mtRF1a / RF1Lmt。在这里,我们重新审视移码模型并解释以下观点:ICT1目前是人类线粒体中非标准终止密码子终止因子的合理候选者。反应我们先前在体外证明线粒体因子ICT1可能参与了两个线粒体ORFs MTCOI和MTND6的非标准终止密码子AGA和AGG的翻译终止[1]。这些发现挑战了Temperley等人的体内数据,他们提出在MTCOI和MTND6的末端AGA和AGG密码子处进行-1移码[2]。结果,两个ORF都以标准UAG密码子终止,因此仅在线粒体中使用单个释放因子mtRF1a / RF1Lmt [3,4]。该模型将暗示ICT1不是必需的,并且不参与MTCOI和MTND6的终止,因为在标准UAG终止密码子上,mtRF1a / RF1Lmt的行为比ICT1更重要。在这里,我们想回顾人类线粒体中非标准终止密码子的移码模型和翻译终止机制。细菌RelE被认为对标准终止密码子UAG和UAA表现出序列偏好性,对AGA和AGG的识别作用却微不足道。应用了一种优雅的技术,证明了人类线粒体中的-1移码:细菌RelE,一种内切性核糖核酸酶,专门切割核糖体A中的mRNA。站点,针对线粒体(mtRelE)[2]。体外研究表明,RelE最常在A位密码子的第二个核苷酸后诱导切割[5]。 mtRelE切割仅在核苷酸A和G之间的MTCO1 mRNA中发生(UA | GA),这表明在U位的UAG密码子发生了-1移码。这种解释有两个问题。 (i)一项广泛的体内研究分析了196个切割位点,并观察到非常适度的序列和位点特异性:密码子后观察到的切割比A位密码子的第二和第三核苷酸之间的切割略多; 64%的切割密码子以G或C结尾,在40%的情况下,切割发生在G之前或之后[6]。体外研究表明,细菌RelE切割具有高密码子特异性的mRNA,优先选择终止密码子UAG,而对AGA密码子的识别低于检测极限[5]。结构研究表明,RelE与核糖体A位点的结合重组了A位点的mRNA。 RelE和16S rRNA中带有保守残基的A位密码子碱基的堆积说明了反应的序列特异性,密码子第一位置的嘧啶的偏爱以及第二和第三位置的嘌呤[5,7]。总而言之,这些数据表明RelE裂解模式不能作为Temperley等人作为密码子A位点位置的证据。做[2]。 (ii)如果末端AGA / AGG密码子前面有一个U核苷酸,则-1移码只会将UAG终止密码子移入A位点。在大多数脊椎动物中不是这种情况,即线粒体mRNA的-1移码不是普遍的。此外,在圆孔兔(兔子)中,CYTB和ND6的两个末端密码子分别是UGA AGG和GCU AGG [8]。在第一种情况下ICT1是否应执行终止工作,在第二种情况下应与RF1Lmt / mtRF1a合作实现-1帧移位?我们认为,在确定人类线粒体激活移码之前,首先要检查RelE在55S线粒体上的密码子特异性,这一点很重要。促进-1移码的元素在COI和ND6 mRNA中被模棱两可。在其他系统中,促进经典移码的特殊元素已经得到了很好的表征[9-11]。这些包括(i)由于稀有或缓慢解码的密码子而暂停或停止的核糖体,(ii)上游的七肽“滑序列”,其后是抑制性二级结构,以及(iii)仅抑制性二级结构移码站点下游的结构。在这方面,Temperley及其同事援引了以下特征,这些特征应引起MTCOI / MTND6 mRNA的-1移码:(a)停在AGA / AGG密码子上的线粒体,没有相关的mt-tRNA,潜在的

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号