...
首页> 外文期刊>PLoS Computational Biology >A Virtual Infection Model Quantifies Innate Effector Mechanisms and Candida albicans Immune Escape in Human Blood
【24h】

A Virtual Infection Model Quantifies Innate Effector Mechanisms and Candida albicans Immune Escape in Human Blood

机译:一个虚拟的感染模型量化人类血液中的先天效应机制和白色念珠菌免疫逃逸。

获取原文

摘要

Candida albicans bloodstream infection is increasingly frequent and can result in disseminated candidiasis associated with high mortality rates. To analyze the innate immune response against C. albicans, fungal cells were added to human whole-blood samples. After inoculation, C. albicans started to filament and predominantly associate with neutrophils, whereas only a minority of fungal cells became attached to monocytes. While many parameters of host-pathogen interaction were accessible to direct experimental quantification in the whole-blood infection assay, others were not. To overcome these limitations, we generated a virtual infection model that allowed detailed and quantitative predictions on the dynamics of host-pathogen interaction. Experimental time-resolved data were simulated using a state-based modeling approach combined with the Monte Carlo method of simulated annealing to obtain quantitative predictions on a priori unknown transition rates and to identify the main axis of antifungal immunity. Results clearly demonstrated a predominant role of neutrophils, mediated by phagocytosis and intracellular killing as well as the release of antifungal effector molecules upon activation, resulting in extracellular fungicidal activity. Both mechanisms together account for almost of C. albicans killing, clearly proving that beside being present in larger numbers than other leukocytes, neutrophils functionally dominate the immune response against C. albicans in human blood. A fraction of C. albicans cells escaped phagocytosis and remained extracellular and viable for up to four hours. This immune escape was independent of filamentation and fungal activity and not linked to exhaustion or inactivation of innate immune cells. The occurrence of C. albicans cells being resistant against phagocytosis may account for the high proportion of dissemination in C. albicans bloodstream infection. Taken together, iterative experiment–model–experiment cycles allowed quantitative analyses of the interplay between host and pathogen in a complex environment like human blood.
机译:白色念珠菌的血液感染日益增加,可能导致散发性念珠菌病,死亡率高。为了分析针对白色念珠菌的先天免疫应答,将真菌细胞添加到人全血样品中。接种后,白色念珠菌开始细丝化并主要与中性粒细胞结合,而仅少数真菌细胞附着在单核细胞上。尽管在全血感染测定中可以直接进行实验量化宿主-病原体相互作用的许多参数,但其他参数则不然。为了克服这些限制,我们生成了一个虚拟感染模型,该模型允许对宿主-病原体相互作用的动力学进行详细和定量的预测。使用基于状态的建模方法与模拟退火的蒙特卡洛方法相结合,对实验时间分辨数据进行了仿真,以得出关于先验未知转变率的定量预测,并确定抗真菌免疫力的主轴。结果清楚地表明,嗜中性粒细胞的主要作用是通过吞噬作用和细胞内杀伤以及激活后抗真菌效应分子的释放介导,从而导致细胞外杀真菌活性。两种机制共同构成了白色念珠菌的几乎全部杀灭,这清楚地证明,嗜中性粒细胞除了比其他白细胞数量更大外,在功能上也支配着人类血液中针对白色念珠菌的免疫反应。一部分白色念珠菌细胞逃脱了吞噬作用,并保持细胞外存活能力长达四个小时。这种免疫逃逸与丝状化和真菌活性无关,并且与先天免疫细胞的衰竭或失活无关。白色念珠菌细胞对吞噬作用具有抗性可能是白色念珠菌血流感染中高比例传播的原因。综上所述,迭代的实验-模型-实验周期可以定量分析宿主血液和病原体在人类血液等复杂环境中的相互作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号