...
首页> 外文期刊>PLoS Computational Biology >A Dendritic Mechanism for Decoding Traveling Waves: Principles and Applications to Motor Cortex
【24h】

A Dendritic Mechanism for Decoding Traveling Waves: Principles and Applications to Motor Cortex

机译:树突机制解码行波:原理和在运动皮层中的应用。

获取原文

摘要

Traveling waves of neuronal oscillations have been observed in many cortical regions, including the motor and sensory cortex. Such waves are often modulated in a task-dependent fashion although their precise functional role remains a matter of debate. Here we conjecture that the cortex can utilize the direction and wavelength of traveling waves to encode information. We present a novel neural mechanism by which such information may be decoded by the spatial arrangement of receptors within the dendritic receptor field. In particular, we show how the density distributions of excitatory and inhibitory receptors can combine to act as a spatial filter of wave patterns. The proposed dendritic mechanism ensures that the neuron selectively responds to specific wave patterns, thus constituting a neural basis of pattern decoding. We validate this proposal in the descending motor system, where we model the large receptor fields of the pyramidal tract neurons — the principle outputs of the motor cortex — decoding motor commands encoded in the direction of traveling wave patterns in motor cortex. We use an existing model of field oscillations in motor cortex to investigate how the topology of the pyramidal cell receptor field acts to tune the cells responses to specific oscillatory wave patterns, even when those patterns are highly degraded. The model replicates key findings of the descending motor system during simple motor tasks, including variable interspike intervals and weak corticospinal coherence. By additionally showing how the nature of the wave patterns can be controlled by modulating the topology of local intra-cortical connections, we hence propose a novel integrated neuronal model of encoding and decoding motor commands.
机译:在许多皮质区域(包括运动皮层和感觉皮层)中都观察到了神经元振荡的行波。尽管此类波的确切功能作用仍存在争议,但通常以任务相关的方式进行调制。在这里,我们推测皮质可以利用行波的方向和波长来编码信息。我们提出了一种新型的神经机制,通过这种机制,树突状受体区域内受体的空间排列可能会解码这些信息。特别是,我们展示了兴奋性受体和抑制性受体的密度分布如何结合起来以充当波型的空间过滤器。提出的树突机制确保神经元选择性地响应特定的波形,从而构成了模式解码的神经基础。我们在下降的运动系统中验证了该提议,在该系统中,我们对锥体束神经元的大受体场(运动皮质的主要输出)进行建模,对在运动皮质中行波模式方向上编码的运动命令进行解码。我们使用运动皮质中现有的场振荡模型来研究锥体细胞受体场的拓扑结构如何调节细胞对特定振荡波模式的响应,即使这些模式高度退化也是如此。该模型复制了在简单的运动任务期间下降的运动系统的主要发现,包括可变的尖峰间隔和较弱的皮质脊髓相干性。通过另外显示如何通过调制局部皮质内连接的拓扑结构来控制波型的性质,因此,我们提出了一种编码和解码运动命令的新型集成神经元模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号