...
首页> 外文期刊>PLoS Computational Biology >Learning Gene Networks under SNP Perturbations Using eQTL Datasets
【24h】

Learning Gene Networks under SNP Perturbations Using eQTL Datasets

机译:使用eQTL数据集在SNP扰动下学习基因网络

获取原文

摘要

The standard approach for identifying gene networks is based on experimental perturbations of gene regulatory systems such as gene knock-out experiments, followed by a genome-wide profiling of differential gene expressions. However, this approach is significantly limited in that it is not possible to perturb more than one or two genes simultaneously to discover complex gene interactions or to distinguish between direct and indirect downstream regulations of the differentially-expressed genes. As an alternative, genetical genomics study has been proposed to treat naturally-occurring genetic variants as potential perturbants of gene regulatory system and to recover gene networks via analysis of population gene-expression and genotype data. Despite many advantages of genetical genomics data analysis, the computational challenge that the effects of multifactorial genetic perturbations should be decoded simultaneously from data has prevented a widespread application of genetical genomics analysis. In this article, we propose a statistical framework for learning gene networks that overcomes the limitations of experimental perturbation methods and addresses the challenges of genetical genomics analysis. We introduce a new statistical model, called a sparse conditional Gaussian graphical model, and describe an efficient learning algorithm that simultaneously decodes the perturbations of gene regulatory system by a large number of SNPs to identify a gene network along with expression quantitative trait loci (eQTLs) that perturb this network. While our statistical model captures direct genetic perturbations of gene network, by performing inference on the probabilistic graphical model, we obtain detailed characterizations of how the direct SNP perturbation effects propagate through the gene network to perturb other genes indirectly. We demonstrate our statistical method using HapMap-simulated and yeast eQTL datasets. In particular, the yeast gene network identified computationally by our method under SNP perturbations is well supported by the results from experimental perturbation studies related to DNA replication stress response.
机译:识别基因网络的标准方法是基于基因调节系统的实验扰动,例如基因敲除实验,然后是差异基因表达的全基因组分析。但是,这种方法受到极大限制,因为不可能同时干扰一个或两个以上的基因来发现复杂的基因相互作用或区分差异表达基因的直接和间接下游调控。作为替代方案,已经提出了遗传基因组学研究,以将自然发生的遗传变异视为基因调节系统的潜在干扰物,并通过分析种群基因表达和基因型数据来恢复基因网络。尽管遗传基因组数据分析具有许多优点,但应从数据中同时解码多因素遗传扰动的影响这一计算难题阻止了遗传基因组分析的广泛应用。在本文中,我们提出了一个用于学习基因网络的统计框架,该框架克服了实验扰动方法的局限性并解决了遗传基因组学分析的挑战。我们引入了一种新的统计模型,称为稀疏条件高斯图形模型,并描述了一种有效的学习算法,该算法可同时解码大量SNP对基因调控系统的干扰,以识别基因网络以及表达定量性状基因座(eQTL)扰乱了这个网络。虽然我们的统计模型捕获了基因网络的直接遗传扰动,但通过对概率图形模型进行推断,我们获得了直接SNP扰动效应如何通过基因网络传播以间接扰动其他基因的详细特征。我们演示了使用HapMap模拟和酵母eQTL数据集的统计方法。特别地,通过我们的方法在SNP扰动下通过计算方法鉴定的酵母基因网络得到了与DNA复制应激反应相关的实验扰动研究结果的有力支持。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号