...
首页> 外文期刊>PLoS Computational Biology >Protein Surface Softness Is the Origin of Enzyme Cold-Adaptation of Trypsin
【24h】

Protein Surface Softness Is the Origin of Enzyme Cold-Adaptation of Trypsin

机译:蛋白质表面柔软性是胰蛋白酶酶冷适应的起源

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Life has effectively colonized most of our planet and extremophilic organisms require specialized enzymes to survive under harsh conditions. Cold-loving organisms (psychrophiles) express heat-labile enzymes that possess a high specific activity and catalytic efficiency at low temperatures. A remarkable universal characteristic of cold-active enzymes is that they show a reduction both in activation enthalpy and entropy, compared to mesophilic orthologs, which makes their reaction rates less sensitive to falling temperature. Despite significant efforts since the early 1970s, the important question of the origin of this effect still largely remains unanswered. Here we use cold- and warm-active trypsins as model systems to investigate the temperature dependence of the reaction rates with extensive molecular dynamics free energy simulations. The calculations quantitatively reproduce the catalytic rates of the two enzymes and further yield high-precision Arrhenius plots, which show the characteristic trends in activation enthalpy and entropy. Detailed structural analysis indicates that the relationship between these parameters and the 3D structure is reflected by significantly different internal protein energy changes during the reaction. The origin of this effect is not localized to the active site, but is found in the outer regions of the protein, where the cold-active enzyme has a higher degree of softness. Several structural mechanisms for softening the protein surface are identified, together with key mutations responsible for this effect. Our simulations further show that single point-mutations can significantly affect the thermodynamic activation parameters, indicating how these can be optimized by evolution.
机译:生命已经有效地殖民了我们的大多数星球,极端微生物需要特殊的酶才能在恶劣的条件下生存。嗜冷生物(嗜冷菌)表达对热不稳定的酶,这些酶在低温下具有很高的比活和催化效率。冷活性酶的显着普遍特性是,与中温直向同源物相比,它们的活化焓和熵均降低,这使得它们的反应速率对温度下降的敏感性降低。尽管自1970年代初以来作出了巨大的努力,但关于这种影响的起因这一重要问题仍在很大程度上尚未得到解答。在这里,我们使用冷和热活性胰蛋白酶作为模型系统,以广泛的分子动力学自由能模拟研究反应速率的温度依赖性。计算定量地重现了这两种酶的催化速率,并进一步生成了高精度的阿伦尼乌斯图,该图显示了活化焓和熵的特征趋势。详细的结构分析表明,这些参数与3D结构之间的关系由反应过程中内部蛋白质能量的显着不同反映出来。这种作用的起源并不局限于活性位点,而是发现在蛋白质的外部区域,那里的冷活性酶具有较高的柔软度。确定了软化蛋白质表面的几种结构机制,以及负责此作用的关键突变。我们的模拟进一步表明,单点突变会显着影响热力学激活参数,表明如何通过进化优化这些参数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号