...
首页> 外文期刊>PLoS Computational Biology >Sparse Gamma Rhythms Arising through Clustering in Adapting Neuronal Networks
【24h】

Sparse Gamma Rhythms Arising through Clustering in Adapting Neuronal Networks

机译:适应性神经网络通过聚类产生的稀疏伽玛节律

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Gamma rhythms (30–100 Hz) are an extensively studied synchronous brain state responsible for a number of sensory, memory, and motor processes. Experimental evidence suggests that fast-spiking interneurons are responsible for carrying the high frequency components of the rhythm, while regular-spiking pyramidal neurons fire sparsely. We propose that a combination of spike frequency adaptation and global inhibition may be responsible for this behavior. Excitatory neurons form several clusters that fire every few cycles of the fast oscillation. This is first shown in a detailed biophysical network model and then analyzed thoroughly in an idealized model. We exploit the fact that the timescale of adaptation is much slower than that of the other variables. Singular perturbation theory is used to derive an approximate periodic solution for a single spiking unit. This is then used to predict the relationship between the number of clusters arising spontaneously in the network as it relates to the adaptation time constant. We compare this to a complementary analysis that employs a weak coupling assumption to predict the first Fourier mode to destabilize from the incoherent state of an associated phase model as the external noise is reduced. Both approaches predict the same scaling of cluster number with respect to the adaptation time constant, which is corroborated in numerical simulations of the full system. Thus, we develop several testable predictions regarding the formation and characteristics of gamma rhythms with sparsely firing excitatory neurons.
机译:伽玛节律(30-100 Hz)是广泛研究的同步大脑状态,负责许多感觉,记忆和运动过程。实验证据表明,快节奏的中间神经元负责携带节奏的高频成分,而规律的尖峰锥体神经元则很少散布。我们建议,峰值频率自适应和全局抑制的组合可能是造成这种现象的原因。兴奋性神经元形成几个簇,这些簇在快速振荡的每几个周期触发一次。首先显示在详细的生物物理网络模型中,然后在理想化模型中进行全面分析。我们利用这样一个事实,即适应的时间尺度比其他变量要慢得多。奇异摄动理论用于导出单个尖峰单元的近似周期解。然后将其用于预测网络中自发出现的簇数之间的关系,因为它与适应时间常数有关。我们将此与使用弱耦合假设的互补分析进行比较,以预测随着外部噪声的降低,第一傅里叶模式会从相关相位模型的不相干状态中不稳定。两种方法相对于适应时间常数都可以预测簇数的相同缩放比例,这在整个系统的数值模拟中得到了证实。因此,我们对稀疏激发兴奋性神经元的伽玛节律的形成和特征进行了一些可检验的预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号