...
首页> 外文期刊>PLoS Computational Biology >Genetic Architecture Promotes the Evolution and Maintenance of Cooperation
【24h】

Genetic Architecture Promotes the Evolution and Maintenance of Cooperation

机译:基因架构促进合作的进化和维持

获取原文
           

摘要

When cooperation has a direct cost and an indirect benefit, a selfish behavior is more likely to be selected for than an altruistic one. Kin and group selection do provide evolutionary explanations for the stability of cooperation in nature, but we still lack the full understanding of the genomic mechanisms that can prevent cheater invasion. In our study we used Aevol, an agent-based, in silico genomic platform to evolve populations of digital organisms that compete, reproduce, and cooperate by secreting a public good for tens of thousands of generations. We found that cooperating individuals may share a phenotype, defined as the amount of public good produced, but have very different abilities to resist cheater invasion. To understand the underlying genetic differences between cooperator types, we performed bio-inspired genomics analyses of our digital organisms by recording and comparing the locations of metabolic and secretion genes, as well as the relevant promoters and terminators. Association between metabolic and secretion genes (promoter sharing, overlap via frame shift or sense-antisense encoding) was characteristic for populations with robust cooperation and was more likely to evolve when secretion was costly. In mutational analysis experiments, we demonstrated the potential evolutionary consequences of the genetic association by performing a large number of mutations and measuring their phenotypic and fitness effects. The non-cooperating mutants arising from the individuals with genetic association were more likely to have metabolic deleterious mutations that eventually lead to selection eliminating such mutants from the population due to the accompanying fitness decrease. Effectively, cooperation evolved to be protected and robust to mutations through entangled genetic architecture. Our results confirm the importance of second-order selection on evolutionary outcomes, uncover an important genetic mechanism for the evolution and maintenance of cooperation, and suggest promising methods for preventing gene loss in synthetically engineered organisms.
机译:当合作具有直接成本和间接利益时,自私的行为比无私的行为更有可能被选择。亲属和群体选择确实为自然界中合作的稳定性提供了进化的解释,但是我们仍然对可以防止欺诈者入侵的基因组机制缺乏充分的了解。在我们的研究中,我们使用了Aevol(一种基于代理的in silico基因组学平台)来进化数字生物种群,这些数字生物通过分泌成千上万代的公共物品来竞争,繁殖和合作。我们发现,合作的个人可能具有相同的表型,即公共产品的生产量,但具有抵抗作弊者入侵的能力。为了了解合作者类型之间潜在的遗传差异,我们通过记录和比较代谢和分泌基因以及相关启动子和终止子的位置,对我们的数字生物进行了生物启发的基因组学分析。代谢和分泌基因之间的关联(启动子共享,通过移码或有义反义编码重叠)是具有稳固合作关系的人群的特征,在分泌成本高昂的情况下更可能进化。在突变分析实验中,我们通过执行大量突变并测量其表型和适应性效应,证明了遗传关联的潜在进化后果。由具有遗传关联的个体产生的非合作突变体更可能具有代谢有害突变,由于伴随的适应性降低,最终导致选择从群体中消除此类突变体。有效地,通过纠缠的遗传结构,合作演变为受到保护并且对突变具有鲁棒性。我们的结果证实了二级选择对进化结果的重要性,揭示了进化和维持合作的重要遗传机制,并提出了预防合成工程化生物中基因丢失的有前途的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号