首页> 外文期刊>PLoS Computational Biology >Flux-Based Transport Enhancement as a Plausible Unifying Mechanism for Auxin Transport in Meristem Development
【24h】

Flux-Based Transport Enhancement as a Plausible Unifying Mechanism for Auxin Transport in Meristem Development

机译:基于通量的运输增强是分生组织发展中生长素运输的合理统一机制

获取原文
           

摘要

Plants continuously generate new organs through the activity of populations of stem cells called meristems. The shoot apical meristem initiates leaves, flowers, and lateral meristems in highly ordered, spiralled, or whorled patterns via a process called phyllotaxis. It is commonly accepted that the active transport of the plant hormone auxin plays a major role in this process. Current hypotheses propose that cellular hormone transporters of the PIN family would create local auxin maxima at precise positions, which in turn would lead to organ initiation. To explain how auxin transporters could create hormone fluxes to distinct regions within the plant, different concepts have been proposed. A major hypothesis, canalization, proposes that the auxin transporters act by amplifying and stabilizing existing fluxes, which could be initiated, for example, by local diffusion. This convincingly explains the organised auxin fluxes during vein formation, but for the shoot apical meristem a second hypothesis was proposed, where the hormone would be systematically transported towards the areas with the highest concentrations. This implies the coexistence of two radically different mechanisms for PIN allocation in the membrane, one based on flux sensing and the other on local concentration sensing. Because these patterning processes require the interaction of hundreds of cells, it is impossible to estimate on a purely intuitive basis if a particular scenario is plausible or not. Therefore, computational modelling provides a powerful means to test this type of complex hypothesis. Here, using a dedicated computer simulation tool, we show that a flux-based polarization hypothesis is able to explain auxin transport at the shoot meristem as well, thus providing a unifying concept for the control of auxin distribution in the plant. Further experiments are now required to distinguish between flux-based polarization and other hypotheses.
机译:植物通过称为分生组织的干细胞群体的活动不断产生新的器官。顶生分生组织通过称为叶序的过程以高度有序,螺旋状或螺旋状的模式引发叶片,花朵和侧生分生组织。普遍认为植物激素生长素的主动转运在该过程中起主要作用。当前的假设提出,PIN家族的细胞激素转运蛋白将在精确的位置上产生局部的生长素最大值,这反过来又会导致器官的启动。为了解释植物生长素转运蛋白如何在植物内不同区域产生激素通量,人们提出了不同的概念。一个主要的假设是渠化,提出生长素转运蛋白的作用是放大和稳定现有的通量,例如可以通过局部扩散来启动。这有说服力地解释了静脉形成过程中有组织的生长素通量,但是对于茎尖分生组织提出了第二个假设,其中激素将被系统地运输到最高浓度的区域。这意味着膜中PIN分配的两种根本不同的机制并存,一种基于通量传感,另一种基于局部浓度传感。由于这些模式化过程需要数百个单元的交互作用,因此无法完全凭直觉来估计特定情况是否可行。因此,计算建模为检验这种复杂的假设提供了有力的手段。在这里,使用专用的计算机仿真工具,我们证明了基于通量的极化假设也能够解释在分生组织中的生长素运输,从而为控制植物中生长素的分布提供了统一的概念。现在需要进一步的实验来区分基于通量的极化和其他假设。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号