首页> 外文期刊>PLoS Biology >A natural histone H2A variant lacking the Bub1 phosphorylation site and regulated depletion of centromeric histone CENP-A foster evolvability in Candida albicans
【24h】

A natural histone H2A variant lacking the Bub1 phosphorylation site and regulated depletion of centromeric histone CENP-A foster evolvability in Candida albicans

机译:天然的组蛋白H2A变异体缺少Bub1磷酸化位点,并且对着丝粒组蛋白CENP-A的调节消耗促进了白色念珠菌的进化。

获取原文
获取外文期刊封面目录资料

摘要

Eukaryotes have evolved elaborate mechanisms to ensure that chromosomes segregate with high fidelity during mitosis and meiosis, and yet specific aneuploidies can be adaptive during environmental stress. Here, we identify a chromatin-based system required for inducible aneuploidy in a human pathogen. Candida albicans utilizes chromosome missegregation to acquire tolerance to antifungal drugs and for nonmeiotic ploidy reduction after mating. We discovered that the ancestor of C . albicans and 2 related pathogens evolved a variant of histone 2A (H2A) that lacks the conserved phosphorylation site for kinetochore-associated Bub1 kinase, a key regulator of chromosome segregation. Using engineered strains, we show that the relative gene dosage of this variant versus canonical H2A controls the fidelity of chromosome segregation and the rate of acquisition of tolerance to antifungal drugs via aneuploidy. Furthermore, whole-genome chromatin precipitation analysis reveals that Centromere Protein A/ Centromeric Histone H3-like Protein (CENP-A/Cse4), a centromeric histone H3 variant that forms the platform of the eukaryotic kinetochore, is depleted from tetraploid-mating products relative to diploid parents and is virtually eliminated from cells exposed to aneuploidy-promoting cues. We conclude that genetically programmed and environmentally induced changes in chromatin can confer the capacity for enhanced evolvability via chromosome missegregation. The pathogenic fungus Candida albicans uses a variant of histone H2A and regulated depletion of the centromeric histone CENP-A to control the stability of its chromosomes.
机译:真核生物已经进化出精细的机制,以确保染色体在有丝分裂和减数分裂过程中以高保真度分离,但是特定的非整倍体在环境压力下仍可以适应。在这里,我们确定了人类病原体中诱导非整倍性所需的基于染色质的系统。白色念珠菌利用染色体错集来获得抗真菌药物的耐受性,并在交配后减少非减数分裂倍数。我们发现C的祖先。白色念珠菌和2种相关病原体进化出了组蛋白2A(H2A)的变体,该变体缺少与动酶相关的Bub1激酶(染色体分离的关键调控因子)的保守磷酸化位点。使用工程菌株,我们表明此变异体相对于规范H2A的相对基因剂量控制染色体分离的保真度和通过​​非整倍性获得抗真菌药物耐受性的速率。此外,全基因组染色质沉淀分析表明,形成真核生物线粒体平台的着丝粒组蛋白H3变体-着丝粒蛋白A /着丝粒组蛋白H3样蛋白(CENP-A / Cse4)相对于四倍体交配产物而言已被消耗掉。到二倍体亲本,并从暴露于非整倍性提示下的细胞中消除。我们得出的结论是,遗传编程和环境诱导的染色质变化可以通过染色体错聚赋予增强的进化能力。致病真菌白色念珠菌使用组蛋白H2A的变体和着丝粒组蛋白CENP-A的调节耗竭来控制其染色体的稳定性。

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号