...
首页> 外文期刊>PLoS Computational Biology >Accuracy Maximization Analysis for Sensory-Perceptual Tasks: Computational Improvements, Filter Robustness, and Coding Advantages for Scaled Additive Noise
【24h】

Accuracy Maximization Analysis for Sensory-Perceptual Tasks: Computational Improvements, Filter Robustness, and Coding Advantages for Scaled Additive Noise

机译:感官任务的精度最大化分析:计算上的改进,滤波器的鲁棒性和成比例增加噪声的编码优势

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Accuracy Maximization Analysis (AMA) is a recently developed Bayesian ideal observer method for task-specific dimensionality reduction. Given a training set of proximal stimuli (e.g. retinal images), a response noise model, and a cost function, AMA returns the filters (i.e. receptive fields) that extract the most useful stimulus features for estimating a user-specified latent variable from those stimuli. Here, we first contribute two technical advances that significantly reduce AMA’s compute time: we derive gradients of cost functions for which two popular estimators are appropriate, and we implement a stochastic gradient descent (AMA-SGD) routine for filter learning. Next, we show how the method can be used to simultaneously probe the impact on neural encoding of natural stimulus variability, the prior over the latent variable, noise power, and the choice of cost function. Then, we examine the geometry of AMA’s unique combination of properties that distinguish it from better-known statistical methods. Using binocular disparity estimation as a concrete test case, we develop insights that have general implications for understanding neural encoding and decoding in a broad class of fundamental sensory-perceptual tasks connected to the energy model. Specifically, we find that non-orthogonal (partially redundant) filters with scaled additive noise tend to outperform orthogonal filters with constant additive noise; non-orthogonal filters and scaled additive noise can interact to sculpt noise-induced stimulus encoding uncertainty to match task-irrelevant stimulus variability. Thus, we show that some properties of neural response thought to be biophysical nuisances can confer coding advantages to neural systems. Finally, we speculate that, if repurposed for the problem of neural systems identification, AMA may be able to overcome a fundamental limitation of standard subunit model estimation. As natural stimuli become more widely used in the study of psychophysical and neurophysiological performance, we expect that task-specific methods for feature learning like AMA will become increasingly important.
机译:精度最大化分析(AMA)是最近开发的用于减少特定于任务的维数的贝叶斯理想观察者方法。给定一组近端刺激(例如视网膜图像),响应噪声模型和成本函数的训练集,AMA返回过滤器(即感受野),这些过滤器提取出最有用的刺激特征,以从这些刺激中估计用户指定的潜在变量。在这里,我们首先贡献了两项技术进步,这些技术进步显着减少了AMA的计算时间:我们推导了适合两个流行估计量的成本函数梯度,并实现了用于过滤器学习的随机梯度下降(AMA-SGD)例程。接下来,我们将展示如何使用该方法同时探查自然刺激变异性,先于潜在变量,噪声功率和成本函数选择对神经编码的影响。然后,我们检查AMA独特的属性组合的几何形状,从而将其与知名的统计方法区分开。使用双目视差估计作为一个具体的测试案例,我们获得了一些见解,这些见解对于理解与能量模型相关的广泛的基本感官任务中的神经编码和解码具有普遍意义。具体而言,我们发现具有成比例的加性噪声​​的非正交(部分冗余)滤波器往往优于具有恒定加性噪声的非正交滤波器。非正交滤波器和按比例缩放的加性噪声​​可以交互作用,以雕刻噪声诱导的刺激编码不确定性,以匹配与任务无关的刺激变异性。因此,我们证明了被认为是生物物理干扰的神经反应的某些属性可以赋予神经系统编码优势。最后,我们推测,如果将其重新用于神经系统识别问题,则AMA可能能够克服标准亚单元模型估计的基本限制。随着自然刺激越来越广泛地用于心理生理和神经生理性能的研究中,我们期望像AMA这样的针对特定任务的特征学习方法将变得越来越重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号