首页> 外文期刊>Plant Protection Science >Projections of climate-induced future range shifts among fruit fly (Diptera: Tephritidae) species in Uganda
【24h】

Projections of climate-induced future range shifts among fruit fly (Diptera: Tephritidae) species in Uganda

机译:乌干达的果蝇(双翅目:蝇科)物种之间由气候引起的未来范围变化的预测

获取原文
           

摘要

The potential impact of future climate change on fruit fly species distribution was assessed in Uganda using two general circulation models (HADCM and CCCMA) and two future predicted CO2 emission scenarios (A2 and B2), under both full and no species dispersal modes. Future ranges were overall projected to decline by 25.4% by year 2050. Under full-dispersal, D. ciliatus C. cosyra B. invadens ranges were predicted to increase, while the rest are likely to decrease. In the no-dispersal scenario, a significant average decrease in size of niches is predicted. Range losses are predicted higher under B2 than A2. Future niches will likely shift to northern Uganda. The results should assist in the development of climate change adaptive pest management strategies.Keywords:climate change; dispersal; Bacrocera; nicheReferences:Bagavathiannan Muthukumar V., Norsworthy Jason K. (2012): Late-Season Seed Production in Arable Weed Communities: Management Implications. Weed Science, 60, 325-334 doi:10.1614/WS-D-11-00222.1 Baraibar Bàrbara, Westerman Paula R., Carrión Eva, Recasens Jordi (2009): Effects of tillage and irrigation in cereal fields on weed seed removal by seed predators. Journal of Applied Ecology, 46, 380-387 doi:10.1111/j.1365-2664.2009.01614.x Batlla Diego, Benech-Arnold Roberto Luis (2014): Weed seed germination and the light environment: Implications for weed management. Weed Biology and Management, 14, 77-87 doi:10.1111/wbm.12039 BENVENUTI , MACCHIA (1998): Phytochrome-mediated germination control of Datura stramonium L. seeds after seed burial. Weed Research, 38, 199-205 doi:10.1046/j.1365-3180.1998.00086.x Benvenuti Stefano, Macchia Mario, Miele Sergio (2001): Quantitative analysis of emergence of seedlings from buried weed seeds with increasing soil depth. Weed Science, 49, 528-535 doi:10.1614/0043-1745(2001)049[0528:QAOEOS]2.0.CO;2 John Bullied W., Van Acker Rene C., Bullock Paul R. (2012): Review: Microsite characteristics influencing weed seedling recruitment and implications for recruitment modeling. Canadian Journal of Plant Science, 92, 627-650 doi:10.4141/cjps2011-281 Chauhan Bhagirath S., Gill Gurjeet, Preston Christopher (2006): Seedling recruitment pattern and depth of recruitment of 10 weed species in minimum tillage and no-till seeding systems. Weed Science, 54, 658-668 doi:10.1614/WS-05-135R.1 Chauhan Bhagirath Singh, Singh Ravi Gopal, Mahajan Gulshan (2012): Ecology and management of weeds under conservation agriculture: A review. Crop Protection, 38, 57-65 doi:10.1016/j.cropro.2012.03.010  FAO (2006): World Reference Base for Soil Resources 2006. A Framework for International Classification, Correlation and Communication. FAO World Soil Resources Reports 103. Rome, Food and Agricultural Organization of the United Nations.  FAO (2012): Available at http://www.fao.org/ag/ca/doc/FLYER_Conservation_Agriculture.pdf (accessed July 28, 2015). GARDARIN A, DüRR C, COLBACH N (2010): Effects of seed depth and soil aggregates on the emergence of weeds with contrasting seed traits. Weed Research, 50, 91-101 doi:10.1111/j.1365-3180.2009.00757.x Hobbs P. R, Sayre K., Gupta R. (2008): The role of conservation agriculture in sustainable agriculture. Philosophical Transactions of the Royal Society B: Biological Sciences, 363, 543-555 doi:10.1098/rstb.2007.2169 Holland J.M. (2004): The environmental consequences of adopting conservation tillage in Europe: reviewing the evidence. Agriculture, Ecosystems & Environment, 103, 1-25 doi:10.1016/j.agee.2003.12.018  Loddo D., Masin R., Gasparini V., Meggio F., Pitacco A., Zanin G. (2015): Assessing microclimate conditions of surface soil layers to improve weed emergence modelling. Italian Journal of Agrometeorology, 20 (Issue 2): 19–26.  Martinková Z., Hon?k A. (2013): Fatal Germination in Barnyardgrass (Echinochloa crus-galli). Plant Protection Science, 49: 193–197. MASIN R, ZUIN MC, OTTO S, ZANIN G (2006): Seed longevity and dormancy of four summer annual grass weeds in turf. Weed Research, 46, 362-370 doi:10.1111/j.1365-3180.2006.00520.x Page Eric R., Cerrudo Diego, Westra Philip, Loux Mark, Smith Kenneth, Foresman Chuck, Wright Harold, Swanton Clarence J. (2012): Why Early Season Weed Control Is Important in Maize. Weed Science, 60, 423-430 doi:10.1614/WS-D-11-00183.1 Refsell D. E., Hartzler R. G. (2009): Effect of Tillage on Common Waterhemp (Amaranthus Rudis) Emergence and Vertical Distribution of Seed in The Soil. Weed Technology, 23, 129-133 doi:10.1614/WT-08-045.1 Scarabel L., Panozzo S., Savoia W., Sattin M. (2014): Target-Site ACCase-Resistant Johnsongrass ( Sorghum halepense ) Selected in Summer Dicot Crops. Weed Technology, 28, 307-315 doi:10.1614/WT-D-13-00137.1  Simi? M., Dolijanovi? ?., Maleti? R., Stefanovi? L., Filipovi? M. (2012): Weed suppression and crop productivity by different arrangement patterns of maize. Plant, Soil and Environmen
机译:在完全和无物种扩散模式下,乌干达使用两种一般循环模型(HADCM和CCCMA)和两种未来预测的CO2排放情景(A2和B2)评估了乌干达未来气候变化对果蝇物种分布的潜在影响。预计到2050年,整个范围将下降25.4%。在完全分散的情况下,D。ciliatus> C. cosyra> B. invadens范围预计会增加,而其他范围可能会减少。在无分散的情况下,可以预见的壁ni大小将显着平均下降。 B2下的距离损失预计比A2高。未来的壁ni可能会转移到乌干达北部。研究结果应有助于发展适应气候变化的有害生物管理策略。分散芽孢杆菌;参考文献:Bagavathiannan Muthukumar V.,Norsworthy Jason K.(2012):耕地杂草群落的后期种子生产:管理意义。 Weed Science,60,325-334 doi:10.1614 / WS-D-11-00222.1BaraibarBàrbara,Westerman Paula R.,CarriónEva,Recasens Jordi(2009):耕作和灌溉对谷物田除草对种子除草的影响掠食者。 Journal of Applied Ecology,46,380-387 doi:10.1111 / j.1365-2664.2009.01614.xBatlla Diego,Benech-Arnold Roberto Luis(2014):杂草种子发芽和光照环境:杂草管理的意义。杂草生物学与管理,14,77-87 doi:10.1111 / wbm.12039.BENVENUTI,MACCHIA(1998):埋藏种子后曼陀罗种子的植物色素介导的发芽控制。 Weed Research,38,199-205 doi:10.1046 / j.1365-3180.1998.00086.x Benvenuti Stefano,Macchia Mario,Miele Sergio(2001):定量分析随着土壤深度的增加,埋藏的杂草种子出苗的情况。 Weed Science,49,528-535 doi:10.1614 / 0043-1745(2001)049 [0528:QAOEOS] 2.0.CO; 2 John Bullied W.,Van Acker Rene C.,Bullock Paul R.(2012):评论:影响杂草幼苗募集的微地点特征及其对募集模型的影响。加拿大植物科学杂志,92,627-650 doi:10.4141 / cjps2011-281 Chauhan Bhagirath S.,Gill Gurjeet,Preston Christopher(2006):最小耕作和免耕情况下10种杂草的幼苗募集模式和募集深度播种系统。 Weed Science,54,658-668 doi:10.1614 / WS-05-135R.1 Chauhan Bhagirath Singh,Singh Ravi Gopal,Mahajan Gulshan(2012):保护性农业下的杂草的生态与管理:综述。作物保护,38,57-65 doi:10.1016 / j.cropro.2012.03.010粮农组织(2006年):2006年世界土壤资源参考库。国际分类,相关和交流框架。粮农组织《世界土壤资源报告》 103.罗马,联合国粮食及农业组织。粮农组织(2012):http://www.fao.org/ag/ca/doc/FLYER_Conservation_Agriculture.pdf(2015年7月28日访问)。 GARDARIN A,DüRRC,COLBACH N(2010年):种子深度和土壤团聚体对杂草出苗特性相反的种子的影响。 Weed Research,50,91-101 doi:10.1111 / j.1365-3180.2009.00757.x Hobbs P.R,Sayre K.,Gupta R.(2008):保护性农业在可持续农业中的作用。皇家学会的哲学交易B:生物科学,363,543-555 doi:10.1098 / rstb.2007.2169荷兰J.M.(2004):在欧洲采用保护性耕作的环境后果:审查证据。农业,生态系统与环境,103,1-25 doi:10.1016 / j.agee.2003.12.018 Loddo D.,Masin R.,Gasparini V.,Meggio F.,Pitacco A.,Zanin G.(2015):评估表层土壤微气候条件,以改善杂草出苗模拟。意大利农业气象学杂志,第20期(第2期):19–26。 MartinkováZ.,Hon?k A.(2013):Bar草的致命发芽(Echinochloa crus-galli)。植物保护科学,49:193–197。 MASIN R,ZUIN MC,OTTO S,ZANIN G(2006):草皮中四种夏季一年生草类杂草的种子寿命和休眠。 Weed Research,46,362-370 doi:10.1111 / j.1365-3180.2006.00520.x页Eric R.,塞鲁多·迭戈,韦斯特拉·菲利普,路易·马克,史密斯·肯尼思,弗里斯曼·查克,赖特·哈罗德,斯旺顿·克拉伦斯·J。(2012 ):为什么早期除草对玉米很重要。 Weed Science,60,423-430 doi:10.1614 / WS-D-11-00183.1 Refsell D.E.,Hartzler R.G.(2009):耕作对普通Waterhemp(Amaranthus Rudis)出苗和土壤中种子垂直分布的影响。 Weed Technology,23,129-133 doi:10.1614 / WT-08-045.1 Scarabel L.,Panozzo S.,Savoia W.,Sattin M.(2014):夏季选择目标位点抗ACCase的约翰逊草(高粱halepense)双子叶植物。 Weed Technology,28,307-315 doi:10.1614 / WT-D-13-00137.1 Simi? M.,Dolijanovi? ?。,Maleti? R.,斯特凡诺维? L.,Filipovi? M.(2012):玉米不同排列方式对杂草的抑制和作物的生产力。植物,土壤与环境

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号