首页> 外文期刊>Physical Review. Accelerators and Beams >High-span class="aps-inline-formula"math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"miQ/mi/math/span operation of superconducting rf cavities: Potential impact of thermocurrents on the rf surface resistance
【24h】

High-span class="aps-inline-formula"math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"miQ/mi/math/span operation of superconducting rf cavities: Potential impact of thermocurrents on the rf surface resistance

机译:高- class =“ aps-inline-formula”> <数学xmlns =“ http://www.w3.org/1998/Math/MathML” display =“ inline”> Q <超导射频腔的/ math> 操作:热电流对射频表面电阻的潜在影响

获取原文
       

摘要

For many new accelerator applications, superconducting radio frequency systems are the enabling technology. In particular for CW applications, much effort is being expended to minimize the power dissipation (surface resistance) of niobium cavities. Starting in 2009, we suggested a means of reducing the residual resistance by performing a thermal cycle [O. Kugeler et al., in Proceedings of the 14th International Conference on RF Superconductivity (2009), p. 352], a procedure of warming up a cavity after initial cooldown to about 20 K and cooling it down again. In subsequent studies [J. M. Vogt, O. Kugeler, and J. Knobloch, Phys. Rev. ST Accel. Beams 16, 102002 (2013)], this technique was used to manipulate the residual resistance by more than a factor of 2. It was postulated that thermocurrents during cooldown generate additional trapped magnetic flux that impacts the cavity quality factor. Here, we present a more extensive study that includes measurements of two additional passband modes and that confirms the effect. In this paper, we also discuss simulations that support the claim. While the layout of the cavity LHe tank system is cylindrically symmetric, we show that the temperature dependence of the material parameters results in a nonsymmetric current distribution. Hence a significant amount of magnetic flux can be generated at the rf surface.
机译:对于许多新的加速器应用,超导射频系统是使能技术。特别是对于连续波应用,人们正在花费很多努力来最小化铌腔的功耗(表面电阻)。从2009年开始,我们提出了一种通过执行热循环来降低残留电阻的方法[O. Kugeler等人在第14届RF超导国际会议论文集(2009)中,第1页。 352],是在初次冷却至约20 K之后将型腔预热并再次冷却的步骤。在随后的研究中[J. M. Vogt,O。Kugeler和J. Knobloch,物理学。 Rev. ST加速。 Beams 16,102002(2013)],该技术用于将残余电阻控制到2倍以上。据推测,冷却期间的热流会产生额外的滞留磁通量,从而影响型腔品质因数。在这里,我们提出了一项更广泛的研究,其中包括对两个其他通带模式的测量,并证实了这一效果。在本文中,我们还将讨论支持索赔的模拟。虽然腔LHe储罐系统的布局是圆柱对称的,但我们表明材料参数的温度依赖性导致电流分布不对称。因此,可以在射频表面上产生大量的磁通量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利