...
首页> 外文期刊>Physical Review. Accelerators and Beams >Planar undulator motion excited by a fixed traveling wave: Quasiperiodic averaging, normal forms, and the free electron laser pendulum
【24h】

Planar undulator motion excited by a fixed traveling wave: Quasiperiodic averaging, normal forms, and the free electron laser pendulum

机译:由固定行波激发的平面起伏器运动:准周期平均,正态形式和自由电子激光摆

获取原文
           

摘要

We present a mathematical analysis of planar motion of energetic electrons moving through a planar dipole undulator, excited by a fixed planar polarized plane wave Maxwell field in the x-ray free electron laser (FEL) regime. Our starting point is the 6D Lorentz system, which allows planar motions, and we examine this dynamical system as the wavelength $ensuremath{lambda}$ of the traveling wave varies. By scalings and transformations the 6D system is reduced, without approximation, to a 2D system in a form for a rigorous asymptotic analysis using the method of averaging (MoA), a long-time perturbation theory. The two dependent variables are a scaled energy deviation and a generalization of the so-called ponderomotive phase. As $ensuremath{lambda}$ varies the system passes through resonant and nonresonant (NonR) intervals and we develop NonR and near-to-resonant (NearR) MoA normal form approximations to the exact equations. The NearR normal forms contain a parameter which measures the distance from a resonance. For the planar motion, with the special initial condition that matches into the undulator design trajectory, and on resonance, the NearR normal form reduces to the well-known FEL pendulum system. We then state and prove NonR and NearR first-order averaging theorems which give explicit error bounds for the normal form approximations. We prove the theorems in great detail, giving the interested reader a tutorial on mathematically rigorous perturbation theory in a context where the proofs are easily understood. The proofs are novel in that they do not use a near-identity transformation and they use a system of differential inequalities. The NonR case is an example of quasiperiodic averaging where the small divisor problem enters in the simplest possible way. To our knowledge the planar problem has not been analyzed with the generality we aspire to here nor has the standard FEL pendulum system been derived with associated error bounds as we do here. We briefly discuss the low gain theory in light of our NearR normal form. Our mathematical treatment of the noncollective FEL beam dynamics problem in the framework of dynamical systems theory sets the stage for our mathematical investigation of the collective high gain regime.
机译:我们对通过平面偶极子波荡器移动的高能电子的平面运动进行数学分析,该平面运动由X射线自由电子激光(FEL)方案中的固定平面极化平面波麦克斯韦场激发。我们的起点是6D Lorentz系统,该系统允许平面运动,并且随着行波的波长$ ensuremath { lambda} $变化,我们研究了该动力学系统。通过缩放和变换,可以将6D系统近似地缩减为2D系统,其形式为使用长期扰动理论平均(MoA)的方法进行严格的渐近分析。这两个因变量是按比例缩放的能量偏差和所谓的磁动力相的推广。随着$ ensuremath { lambda} $的变化,系统会经过共振和非共振(NonR)间隔,因此我们针对精确的方程式开发了NonR和近似共振(NearR)MoA范式近似。 NearR范式包含一个参数,该参数测量到共振的距离。对于平面运动,具有与波动器设计轨迹相匹配的特殊初始条件,并且在共振时,NearR法线形式简化为众所周知的FEL摆系统。然后,我们陈述并证明NonR和NearR一阶平均定理,这些定理给出了正常形式近似的显式误差范围。我们详细地证明了定理,在感兴趣的证明易于理解的情况下,为感兴趣的读者提供了数学上严格的扰动理论的教程。证明是新颖的,因为它们不使用近似恒等变换,而是使用微分不等式系统。 NonR案例是准周期平均的一个示例,其中小除数问题以最简单的方式进入。就我们所知,没有以我们所追求的一般性来分析平面问题,也没有像我们在这里那样用相关的误差范围来推导标准的FEL摆系统。我们根据NearR范式简要讨论低增益理论。我们在动力学系统理论框架内对非集体FEL光束动力学问题的数学处理为集体高增益体制的数学研究奠定了基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号