首页> 外文期刊>Physical Review. Accelerators and Beams >Collisionless shock acceleration of narrow energy spread ion beams from mixed species plasmas using math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"mrowmn1/mnmtext?/mtextmtext?/mtextmiμ/mimi mathvariant="normal"m/mi/mrow/math lasers
【24h】

Collisionless shock acceleration of narrow energy spread ion beams from mixed species plasmas using math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"mrowmn1/mnmtext?/mtextmtext?/mtextmiμ/mimi mathvariant="normal"m/mi/mrow/math lasers

机译:使用 1 的混合物种等离子体产生的窄能量扩散离子束的无碰撞冲击加速mn> μ m 激光器

获取原文
           

摘要

Collisionless shock acceleration of protons and ${mathrm{C}}^{6+}$ ions has been achieved by the interaction of a ${10}^{20}ext{ }ext{ }mathrm{W}/{mathrm{cm}}^{2}$, $1ext{ }ext{ }ensuremath{mu}mathrm{m}$ laser with a near-critical density plasma. Ablation of the initially solid density target by a secondary laser allows for systematic control of the plasma profile. This enables the production of beams with peaked spectra with energies of $10--18ext{ }ext{ }mathrm{MeV}/mathrm{amu}$ and energy spreads of 10%--20% with up to $3ifmmodeimeselseexttimesi{}{10}^{9}$ particles within these narrow spectral features. The narrow energy spread and similar velocity of ion species with different charge-to-mass ratios are consistent with acceleration by the moving potential of a shock wave. Particle-in-cell simulations show shock accelerated beams of protons and ${mathrm{C}}^{6+}$ ions with energy distributions consistent with the experiments. Simulations further indicate the plasma profile determines the trade-off between the beam charge and energy and that with additional target optimization narrow energy spread beams exceeding $100ext{ }ext{ }mathrm{MeV}/mathrm{amu}$ can be produced using the same laser conditions.
机译:质子和$ { mathrm {C}} ^ {6 +} $离子的无碰撞冲击加速是通过$ {10} ^ {20} text {} text {} mathrm {W}的相互作用实现的/ { mathrm {cm}} ^ {2} $,$ 1 text {} text {} ensuremath { mu} mathrm {m} $激光器,具有接近临界密度的等离子体。通过次级激光烧蚀最初的固体密度目标,可以系统地控制等离子体轮廓。这样就可以产生具有峰值光谱的光束,能量为$ 10--18 text {} text {} mathrm {MeV} / mathrm {amu} $,能量散布为10%-20%,最高$ 3这些狭窄的光谱特征内的 ifmmode times else texttimes fi {} {10} ^ {9} $粒子。具有不同的荷质比的窄的能量散布和相似的离子种类速度与通过冲击波的移动势的加速度一致。单元中粒子模拟显示了质子和$ { mathrm {C}} ^ {6 +} $离子的冲击加速束,其能量分布与实验一致。模拟进一步表明,等离子体轮廓确定了束电荷和能量之间的折衷,通过额外的目标优化,窄能量扩散束超过了$ 100 text {} text {} mathrm {MeV} / mathrm {amu} $在相同的激光条件下生产。

相似文献

  • 外文文献
  • 中文文献
  • 专利