首页> 外文期刊>Physical Review. Accelerators and Beams >One-dimensional kinetic description of nonlinear traveling-pulse and traveling-wave disturbances in long coasting charged particle beams
【24h】

One-dimensional kinetic description of nonlinear traveling-pulse and traveling-wave disturbances in long coasting charged particle beams

机译:长惯性带电粒子束中非线性行波和行波干扰的一维动力学描述

获取原文
           

摘要

This paper makes use of a one-dimensional kinetic model to investigate the nonlinear longitudinal dynamics of a long coasting beam propagating through a perfectly conducting circular pipe with radius ${r}_{w}$. The average axial electric field is expressed as $?{E}_{z}?=ensuremath{-}(ensuremath{partial}/ensuremath{partial}z)?ensuremath{phi}?=ensuremath{-}{e}_{b}{g}_{0}ensuremath{partial}{ensuremath{lambda}}_{b}/ensuremath{partial}zensuremath{-}{e}_{b}{g}_{2}{r}_{w}^{2}{ensuremath{partial}}^{3}{ensuremath{lambda}}_{b}/ensuremath{partial}{z}^{3}$, where ${g}_{0}$ and ${g}_{2}$ are constant geometric factors, ${ensuremath{lambda}}_{b}(z,t)=ensuremath{int}d{p}_{z}{F}_{b}(z,{p}_{z},t)$ is the line density of beam particles, and ${F}_{b}(z,{p}_{z},t)$ satisfies the 1D Vlasov equation. Detailed nonlinear properties of traveling-wave and traveling-pulse (soliton) solutions with time-stationary waveform are examined for a wide range of system parameters extending from moderate-amplitudes to large-amplitude modulations of the beam charge density. Two classes of solutions for the beam distribution function are considered, corresponding to: (i) the nonlinear waterbag distribution, where ${F}_{b}=ext{const}$ in a bounded region of ${p}_{z}$-space; and (ii) nonlinear Bernstein-Green-Kruskal (BGK)-like solutions, allowing for both trapped and untrapped particle distributions to interact with the self-generated electric field $?{E}_{z}?$.
机译:本文利用一维动力学模型研究了长滑行光束通过半径为{{r} _ {w} $的完美导电圆形管道传播的非线性纵向动力学。平均轴向电场表示为$?{E} _ {z}?= ensuremath {-}( ensuremath { partial} / ensuremath { partial} z)? ensuremath { phi}?= suremath {-} {e} _ {b} {g} _ {0} ensuremath { partial} { ensuremath { lambda}} _ {b} / ensuremath { partial} z ensuremath {-} { e} _ {b} {g} _ {2} {r} _ {w} ^ {2} { ensuremath { partial}} ^ {3} { ensuremath { lambda}} _ {b} / suremath { partial} {z} ^ {3} $,其中$ {g} _ {0} $和$ {g} _ {2} $是恒定的几何因子,$ { ensuremath { lambda}} _ { b}(z,t)= ensuremath { int} d {p} _ {z} {F} _ {b}(z,{p} _ {z},t)$是光束粒子的线密度,并且$ {F} _ {b}(z,{p} _ {z},t)$满足一维Vlasov方程。对于束电荷密度的从中幅到大幅调制的各种系统参数,研究了具有时间平稳波形的行波和行脉冲(孤子)解决方案的详细非线性特性。考虑束分布函数的两类解,分别对应于:(i)非线性水袋分布,其中$ {p} _ {的有界区域中的$ {F} _ {b} = text {const} $ z} $-space; (ii)类似于非线性Bernstein-Green-Kruskal(BGK)的解决方案,允许俘获和未俘获的粒子分布与自生电场$?{E} _ {z}?$相互作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号