首页> 外文期刊>Physical review, D >Influence of backreaction of electric fields and Schwinger effect on inflationary magnetogenesis
【24h】

Influence of backreaction of electric fields and Schwinger effect on inflationary magnetogenesis

机译:电场的反向反应和施温格效应对膨胀磁生成的影响

获取原文
           

摘要

We study the generation of electromagnetic fields during inflation when the conformal invariance of Maxwell’s action is broken by the kinetic coupling f 2 ( ? ) F μ ν F μ ν of the electromagnetic field to the inflaton field ? . We consider the case where the coupling function f ( ? ) decreases in time during inflation and, as a result, the electric component of the energy density dominates over the magnetic one. The system of equations which governs the joint evolution of the scale factor, inflaton field, and electric energy density is derived. The backreaction occurs when the electric energy density becomes as large as the product of the slow-roll parameter ε and inflaton energy density, ρ E ~ ε ρ inf . It affects the inflaton field evolution and leads to the scale-invariant electric power spectrum and the magnetic one which is blue with the spectral index n B = 2 for any decreasing coupling function. This gives an upper limit on the present-day value of observed magnetic fields below 10 ? 22 ? ? G . It is worth emphasizing that since the effective electric charge of particles e eff = e / f is suppressed by the coupling function, the Schwinger effect becomes important only at the late stages of inflation when the inflaton field is close to the minimum of its potential. The Schwinger effect abruptly decreases the value of the electric field, helping to finish the inflation stage and enter the stage of preheating. It effectively produces the charged particles, implementing the Schwinger reheating scenario even before the fast oscillations of the inflaton. The numerical analysis is carried out in the Starobinsky model of inflation for the powerlike f ∝ a α and Ratra-type f = exp ( β ? / M p ) coupling functions.
机译:我们研究了充气过程中电磁场与充气子场的动力学耦合f 2(?)FμνFμν打破了麦克斯韦作用的共形不变性时在充气过程中产生的电磁场。 。我们考虑这样一种情况,即耦合函数f()在充气过程中随时间减小,结果,能量密度的电分量在磁性分量上占主导地位。得出了控制比例因子,膨胀子场和电能密度的联合演化的方程组。当电能密度变得与慢滚动参数ε和膨胀子能量密度ρE〜ερinf的乘积一样大时,就会发生逆反应。它影响充气子场的演化,并导致尺度不变的功率谱和磁性谱,对于任何递减的耦合函数,电磁谱为蓝色,其光谱指数为n B = 2。这给出了低于10Ω的当前观测磁场的上限。 22? ? G 。值得强调的是,由于耦合功能抑制了粒子的有效电荷e eff = e / f,因此,只有在充气后期,当充气子场接近其势能最小值时,史瓦格效应才变得重要。 Schwinger效应突然降低了电场值,有助于完成膨胀阶段并进入预热阶段。它可以有效地产生带电粒子,甚至在充气机快速振荡之前就实现了Schwinger再加热方案。在Starobinsky膨胀模型中对幂函数f ∝ aα和Ratra型f = exp(β?/ M p)耦合函数进行了数值分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号