首页> 外文期刊>Particle Fibre Toxicology >ISDD: A computational model of particle sedimentation, diffusion and target cell dosimetry for in vitro toxicity studies
【24h】

ISDD: A computational model of particle sedimentation, diffusion and target cell dosimetry for in vitro toxicity studies

机译:ISDD:用于体外毒性研究的颗粒沉降,扩散和靶细胞剂量测定的计算模型

获取原文
       

摘要

Background The difficulty of directly measuring cellular dose is a significant obstacle to application of target tissue dosimetry for nanoparticle and microparticle toxicity assessment, particularly for in vitro systems. As a consequence, the target tissue paradigm for dosimetry and hazard assessment of nanoparticles has largely been ignored in favor of using metrics of exposure (e.g. μg particle/mL culture medium, particle surface area/mL, particle number/mL). We have developed a computational model of solution particokinetics (sedimentation, diffusion) and dosimetry for non-interacting spherical particles and their agglomerates in monolayer cell culture systems. Particle transport to cells is calculated by simultaneous solution of Stokes Law (sedimentation) and the Stokes-Einstein equation (diffusion). Results The In vitro Sedimentation, Diffusion and Dosimetry model (ISDD) was tested against measured transport rates or cellular doses for multiple sizes of polystyrene spheres (20-1100 nm), 35 nm amorphous silica, and large agglomerates of 30 nm iron oxide particles. Overall, without adjusting any parameters, model predicted cellular doses were in close agreement with the experimental data, differing from as little as 5% to as much as three-fold, but in most cases approximately two-fold, within the limits of the accuracy of the measurement systems. Applying the model, we generalize the effects of particle size, particle density, agglomeration state and agglomerate characteristics on target cell dosimetry in vitro . Conclusions Our results confirm our hypothesis that for liquid-based in vitro systems, the dose-rates and target cell doses for all particles are not equal; they can vary significantly, in direct contrast to the assumption of dose-equivalency implicit in the use of mass-based media concentrations as metrics of exposure for dose-response assessment. The difference between equivalent nominal media concentration exposures on a μg/mL basis and target cell doses on a particle surface area or number basis can be as high as three to six orders of magnitude. As a consequence, in vitro hazard assessments utilizing mass-based exposure metrics have inherently high errors where particle number or surface areas target cells doses are believed to drive response. The gold standard for particle dosimetry for in vitro nanotoxicology studies should be direct experimental measurement of the cellular content of the studied particle. However, where such measurements are impractical, unfeasible, and before such measurements become common, particle dosimetry models such as ISDD provide a valuable, immediately useful alternative, and eventually, an adjunct to such measurements.
机译:背景技术直接测量细胞剂量的困难是将靶组织剂量测定法应用于纳米颗粒和微粒毒性评估,特别是对于体外系统的重大障碍。结果,用于剂量学和纳米颗粒危害评估的目标组织范例已被很大程度上忽略,而倾向于使用暴露度量(例如,μg颗粒/ mL培养基,颗粒表面积/ mL,颗粒数/ mL)。我们已经开发了非相互作用的球形颗粒及其在单层细胞培养系统中的团聚体的溶液动力学(沉降,扩散)和剂量测定的计算模型。通过同时求解斯托克斯定律(沉降)和斯托克斯-爱因斯坦方程(扩散)来计算向细胞的颗粒转运。结果针对多种尺寸的聚苯乙烯球体(20-1100 nm),35 nm无定形二氧化硅和30 nm铁氧化物颗粒的大团聚物,针对测量的传输速率或细胞剂量测试了体外沉降,扩散和剂量测定模型(ISDD)。总体而言,在不调整任何参数的情况下,模型预测的细胞剂量与实验数据非常吻合,在准确度范围内,差异仅为5%至三倍,但在大多数情况下约为两倍测量系统。应用该模型,我们概括了粒径,颗粒密度,附聚状态和附聚特性对体外靶细胞剂量测定的影响。结论我们的结果证实了我们的假设:对于基于液体的体外系统,所有颗粒的剂量率和靶细胞剂量均不相等。与基于质量的培养基浓度作为剂量反应评估的暴露指标所隐含的剂量当量的假设直接相反,它们的差异可能很大。基于μg/ mL的等效标称培养基浓度暴露与基于颗粒表面积或数量的靶细胞剂量之间的差异可能高达三到六个数量级。结果,利用基于质量的暴露量度进行的体外危害评估固有地具有高误差,其中认为粒子数量或表面积可将靶细胞剂量驱动反应。用于体外纳米毒理学研究的颗粒剂量测定的金标准应为所研究颗粒的细胞含量的直接实验测量。但是,在这种测量不切实际,不可行的情况下,并且在这种测量变得普遍之前,诸如ISDD之类的颗粒剂量模型提供了一种有价值的,立即可用的替代方法,并最终为此类测量提供了补充。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号