首页> 外文期刊>Symmetry >Hierarchical Meta-Learning in Time Series Forecasting for Improved Interference-Less Machine Learning
【24h】

Hierarchical Meta-Learning in Time Series Forecasting for Improved Interference-Less Machine Learning

机译:时间序列预测中的分层元学习,以改进无干扰机器学习

获取原文
           

摘要

The importance of an interference-less machine learning scheme in time series prediction is crucial, as an oversight can have a negative cumulative effect, especially when predicting many steps ahead of the currently available data. The on-going research on noise elimination in time series forecasting has led to a successful approach of decomposing the data sequence into component trends to identify noise-inducing information. The empirical mode decomposition method separates the time series/signal into a set of intrinsic mode functions ranging from high to low frequencies, which can be summed up to reconstruct the original data. The usual assumption that random noises are only contained in the high-frequency component has been shown not to be the case, as observed in our previous findings. The results from that experiment reveal that noise can be present in a low frequency component, and this motivates the newly-proposed algorithm. Additionally, to prevent the erosion of periodic trends and patterns within the series, we perform the learning of local and global trends separately in a hierarchical manner which succeeds in detecting and eliminating short/long term noise. The algorithm is tested on four datasets from financial market data and physical science data. The simulation results are compared with the conventional and state-of-the-art approaches for time series machine learning, such as the non-linear autoregressive neural network and the long short-term memory recurrent neural network, respectively. Statistically significant performance gains are recorded when the meta-learning algorithm for noise reduction is used in combination with these artificial neural networks. For time series data which cannot be decomposed into meaningful trends, applying the moving average method to create meta-information for guiding the learning process is still better than the traditional approach. Therefore, this new approach is applicable to the forecasting of time series with a low signal to noise ratio, with a potential to scale adequately in a multi-cluster system due to the parallelized nature of the algorithm.
机译:无干扰机器学习方案在时间序列预测中的重要性至关重要,因为疏忽可能产生负面的累积影响,尤其是在预测当前数据之前的许多步骤时。对时间序列预测中的噪声消除的持续研究导致了一种成功的方法,即将数据序列分解为分量趋势以识别引起噪声的信息。经验模式分解方法将时间序列/信号分为一组固有模式函数,范围从高频到低频,可以将这些函数相加起来以重建原始数据。正如我们先前的发现所观察到的那样,通常的假设是随机噪声仅包含在高频分量中,事实并非如此。该实验的结果表明,噪声可能存在于低频分量中,这激发了新提出的算法。此外,为了防止侵蚀系列中的周期性趋势和模式,我们以分层方式分别执行局部和全局趋势的学习,从而成功地检测和消除了短期/长期噪声。该算法在来自金融市场数据和自然科学数据的四个数据集上进行了测试。将模拟结果与常规的和时间序列机器学习的最新方法进行了比较,例如非线性自回归神经网络和长短期记忆递归神经网络。当将用于降噪的元学习算法与这些人工神经网络结合使用时,会记录到统计上显着的性能提升。对于无法分解为有意义趋势的时间序列数据,应用移动平均法创建元信息来指导学习过程仍然比传统方法更好。因此,这种新方法适用于具有低信噪比的时间序列的预测,由于该算法的并行性,它有可能在多集群系统中适当扩展。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号