...
首页> 外文期刊>Stem Cell Reports >A Chemical Biology Study of Human Pluripotent Stem Cells Unveils HSPA8 as a Key Regulator of Pluripotency
【24h】

A Chemical Biology Study of Human Pluripotent Stem Cells Unveils HSPA8 as a Key Regulator of Pluripotency

机译:人类多能干细胞的化学生物学研究揭示了HSPA8作为多能性的关键调节因子

获取原文
           

摘要

Highlights ? A human ECC-based screen identified novel chemical regulators of pluripotency ? Displurigen disrupts human embryonic stem cell pluripotency by targeting HSPA8 ? HSPA8 maintains pluripotency by facilitating the DNA-binding activity of OCT4 Summary Chemical biology methods such as high-throughput screening (HTS) and affinity-based target identification can be used to probe biological systems on a biomacromolecule level, providing valuable insights into the molecular mechanisms of those systems. Here, by establishing a human embryonal carcinoma cell-based HTS platform, we screened 171,077 small molecules for regulators of pluripotency and identified a small molecule, Displurigen, that potently disrupts hESC pluripotency by targeting heat shock 70-kDa protein 8 (HSPA8), the constitutively expressed member of the 70-kDa heat shock protein family, as elucidated using affinity-based target identification techniques and confirmed by loss-of-function and gain-of-function assays. We demonstrated that HSPA8 maintains pluripotency by binding to the master pluripotency regulator OCT4 and facilitating its DNA-binding activity. prs.rt("abs_end"); Introduction The pluripotency regulators OCT4, NANOG, and SOX2 form a core transcription regulatory network through auto- and reciprocal activations at the transcription level, which is believed to be responsible for the maintenance of human embryonic stem cell (hESC) pluripotency ( Boyer et?al., 2005 ). At the same time, multiple protein factors belonging to a diversity of functional categories, such as transcription factors, epigenetic factors, and signaling components, work cooperatively to form an expanded pluripotency factor network that supports the core pluripotency network ( Boyer et?al., 2005 ). In contrast to the well-defined core network, our knowledge of this expanded pluripotency network, including its components, the interactions between these components, and the mechanism of interaction between the expanded network and the core network, remains insufficient. Bioactive small molecules have been applied to the field of hESC research with success. Many such studies have applied small molecules as modulators of lineage-specific differentiations ( Borowiak et?al., 2009 , Chen et?al., 2009 , Chen et?al., 2012 , Gonzalez et?al., 2011a , Lian et?al., 2012 and Mahmood et?al., 2010 ). Other studies have exploited small molecules as chemical probes to uncover novel molecular mechanisms underlying hESC pluripotency or differentiation ( Chen et?al., 2006 , Xu et?al., 2010 and Zhu et?al., 2009 ). High-throughput screenings (HTS) were usually conducted for the search of such molecules. If the mechanism of action was unknown for a given molecule, affinity-based target identification methods can be used to identify its?biological target(s). These studies have been used to identify novel protein factors and to unveil previously unknown molecular mechanisms that regulate hESC fate determination ( Xu et?al., 2008 ). In recent years, hESCs and human induced pluripotent stem cells (hiPSCs) have been used successfully for HTS in several studies ( Barbaric et?al., 2010 , Ben-David et?al., 2013 , Desbordes et?al., 2008 , Gonzalez et?al., 2011b , Kameoka et?al., 2014 , Kumagai et?al., 2013 , Manganelli et?al., 2014 and Xu et?al., 2010 ). However, the high cost associated with the maintenance and scale-up of human pluripotent stem cells (hPSCs) inevitably limits the scale of their application in HTS studies. We chose to explore an alternative source of pluripotent stem cells, human embryonal carcinoma cells (hECCs), as a robust platform for HTS with low cost. hECCs are pluripotent stem cells derived from human teratocarcinomas and are considered to be the malignant counterparts of hESCs. The molecular regulatory mechanism of hECC pluripotency has been shown to mimic that of hESCs ( Josephson et?al., 2007 ). Because of their cancerous nature, hECCs are not prone to spontaneous differentiation and require a less demanding culture condition compared with hPSCs. Experimental results acquired from studies using hECCs have been proven to be highly stable and readily reproducible ( Josephson et?al., 2007 ), making hECCs ideal candidate platforms for HTS purposes. Based on the concept of hECC-based HTS, we established a pluripotency reporter system using the hECC line NTERA-2. Using this system, we conducted a large-scale chemical screening and found 122 small molecules that disrupt hESC pluripotency. One of these molecules, which we named Displurigen, potently disrupts hESC pluripotency by targeting heat shock 70-kDa protein 8 (HSPA8, the constitutively expressed member of the 70-kDa heat shock protein family), as discovered using affinity-based target identification methods and functional validations. We demonstrated that HSPA8 helps maintain pluripotency by direct binding to the OCT4 protein and facilitating OCT4 binding to DNA. Results Establishment of an NTERA-2 Cell-Based Pluripo
机译:强调 ?基于人类ECC的屏幕确定了多能性的新型化学调节剂? Displurigen通过靶向HSPA8来破坏人类胚胎干细胞的多能性。 HSPA8通过促进OCT4的DNA结合活性来维持多能性。总结化学生物学方法,例如高通量筛选(HTS)和基于亲和力的靶标鉴定,可用于探测生物大分子水平的生物系统,从而提供对分子机制的宝贵见解这些系统。在这里,通过建立一个基于人类胚胎癌细胞的HTS平台,我们筛选了171,077个小分子用于多能性调节剂,并鉴定了一个小分子Displurigen,该分子通过靶向热休克70 kDa蛋白8(HSPA8)来有效破坏hESC多能性。 70 kDa热休克蛋白家族的组成性表达成员,已使用基于亲和力的靶标鉴定技术进行了阐明,并通过功能丧失和功能获得分析得以证实。我们证明,HSPA8通过与主要多能性调节剂OCT4结合并促进其DNA结合活性来维持多能性。 prs.rt(“ abs_end”);简介多能性调节剂OCT4,NANOG和SOX2通过在转录水平上的自动和相互激活形成核心转录调节网络,据信这是维持人类胚胎干细胞(hESC)多能性的原因(Boyer等人)。 ,2005年)。同时,属于多种功能类别的多种蛋白质因子(例如转录因子,表观遗传因子和信号传导成分)协同工作,形成一个扩展的多能性因子网络,该网络支持核心多能性网络(Boyer等人, 2005)。与定义明确的核心网络相反,我们对这种扩展的多用途网络(包括其组件,这些组件之间的交互以及扩展网络与核心网络之间的交互机制)的了解仍然不足。具有生物活性的小分子已成功应用于hESC研究领域。许多此类研究已将小分子用作谱系特异性分化的调节剂(Borowiak等,2009; Chen等,2009; Chen等,2012; Gonzalez等,2011a; Lian等。等人,2012年和Mahmood等人,2010年)。其他研究已经利用小分子作为化学探针来揭示hESC多能性或分化基础的新分子机制(Chen等,2006; Xu等,2010; Zhu等,2009)。通常进行高通量筛选(HTS)以搜索此类分子。如果给定分子的作用机理未知,则可以使用基于亲和力的靶标鉴定方法来鉴定其生物学靶标。这些研究已被用于鉴定新的蛋白质因子,并揭示了调节hESC命运决定的未知分子机制(Xu等人,2008年)。近年来,hESC和人类诱导的多能干细胞(hiPSC)已在多项研究中成功用于HTS(Barbaric等,2010; Ben-David等,2013; Desbordes等,2008; Gonzalez等,2011b; Kameoka等,2014; Kummagai等,2013; Manganelli等,2014; Xu等,2010)。但是,与人类多能干细胞(hPSC)的维持和放大相关的高昂成本不可避免地限制了它们在HTS研究中的应用规模。我们选择探索多能干细胞的替代来源,人类胚胎癌细胞(hECCs),作为低成本HTS的强大平台。 hECC是衍生自人畸胎癌的多能干细胞,被认为是hESC的恶性对应物。已显示出hECC多能性的分子调控机制可模仿hESC的分子调控机制(约瑟夫森等,2007)。由于hECCs具有癌性,因此与hPSC相比,它们不易于自发分化,并且对培养条件的要求不高。从使用hECC的研究中获得的实验结果已被证明是高度稳定且易于再现的(约瑟夫森等,2007),使hECC成为用于HTS的理想候选平台。基于基于hECC的HTS的概念,我们使用hECC系列NTERA-2建立了多能报告系统。使用该系统,我们进行了大规模的化学筛选,发现了122个破坏hESC多能性的小分子。这些分子之一,我们命名为Displurigen,通过靶向热休克70-kDa蛋白8(HSPA8,70-kDa热休克蛋白家族的组成性表达成员)而有效破坏hESC多能性,这是基于基于亲和力的目标识别方法发现的和功能验证。我们证明,HSPA8通过直接与OCT4蛋白结合并促进OCT4与DNA结合来帮助维持多能性。基于NTERA-2细胞的多菌灵的结果建立

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号