...
首页> 外文期刊>Solid Earth >Lithosphere and upper-mantle structure of the southern Baltic Sea estimated from modelling relative sea-level data with glacial isostatic adjustment
【24h】

Lithosphere and upper-mantle structure of the southern Baltic Sea estimated from modelling relative sea-level data with glacial isostatic adjustment

机译:根据对冰层等静压调整的相对海平面数据进行建模估算的波罗的海南部岩石圈和上地幔结构

获取原文

摘要

During the last glacial maximum, a large ice sheet covered Scandinavia, whichdepressed the earth's surface by several 100 m. In northern central Europe,mass redistribution in the upper mantle led to the development of aperipheral bulge. It has been subsiding since the begin of deglaciation dueto the viscoelastic behaviour of the mantle.We analyse relative sea-level (RSL) data of southern Sweden, Denmark,Germany, Poland and Lithuania to determine the lithospheric thickness andradial mantle viscosity structure for distinct regional RSL subsets. We loada 1-D Maxwell-viscoelastic earth model with a global ice-loadhistory model of the last glaciation. We test two commonly used icehistories, RSES from the Australian National University and ICE-5G from theUniversity of Toronto.Our results indicate that the lithospheric thickness varies, depending on theice model used, between 60 and 160 km. The lowest values are found in theOslo Graben area and the western German Baltic Sea coast. In between,thickness increases by at least 30 km tracing the Ringk?bing-Fyn High. InPoland and Lithuania, lithospheric thickness reaches up to 160 km. However,the latter values are not well constrained as the confidence regions arelarge. Upper-mantle viscosity is found to bracket[2–7] × 1020 Pa s when using ICE-5G. Employing RSES muchhigher values of 2 × 1021 Pa s are obtained for the southernBaltic Sea. Further investigations should evaluate whether this ice-model versionand/or the RSL data need revision. We confirm that the lower-mantle viscosityin Fennoscandia can only be poorly resolved.The lithospheric structure inferred from RSES partly supports structuralfeatures of regional and global lithosphere models based on thermal orseismological data. While there is agreement in eastern Europe and southwestSweden, the structure in an area from south of Norway to northern Germanyshows large discrepancies for two of the tested lithosphere models. Thelithospheric thickness as determined with ICE-5G does not agree with thelithosphere models. Hence, more investigations have to be undertaken tosufficiently determine structures such as the Ringk?bing-Fyn High as seenwith seismics with the help of glacial isostatic adjustment modelling.
机译:在最后一次冰川最大期间,斯堪的那维亚半岛上覆盖了一块大冰原,使地球表面凹陷了数百m。在中欧北部,上地幔的质量重新分布导致了周围凸起的发展。自从冰消开始以来,由于地幔的粘弹性行为,它一直处于沉降状态。 我们分析了瑞典南部,丹麦,德国,波兰和立陶宛的相对海平面(RSL)数据,以确定岩石圈的厚度和径向不同区域RSL子集的地幔粘度结构。我们使用最后一次冰消的整体冰荷载历史模型加载一维麦克斯韦粘弹性地球模型。我们测试了两种常用的冰史,分别是澳大利亚国立大学的RSES和多伦多大学的ICE-5G。 我们的结果表明,岩石圈的厚度根据所用冰模型的不同,在60至160 km之间变化。最低值出现在奥斯陆格拉本地区和德国西部波罗的海沿岸。在两者之间,厚度增加至少30公里,达到Ringkbing-Fyn High。在波兰和立陶宛,岩石圈厚度达160公里。但是,由于置信区域较大,因此后一个值的约束不大。使用ICE-5G时,发现上地幔粘度达到[2-7]×10 20 Pa s。使用RSES,波罗的海南部获得了更高的2×10 21 Pa s值。进一步的调查应评估此冰模型版本和/或RSL数据是否需要修订。我们确认,芬诺斯坎迪亚的下地幔粘度只能解决得很差。 从RSES推断出的岩石圈结构部分支持了基于热震学数据的区域和全球岩石圈模型的结构特征。尽管东欧和瑞典西南部达成协议,但从挪威南部到德国北部的区域结构显示,两个测试的岩石圈模型存在较大差异。用ICE-5G确定的岩石圈厚度与岩石圈模型不一致。因此,必须进行更多的研究来充分确定诸如Ringkbing-Fyn High之类的结构,并借助冰川等静压调整模型来进行地震观测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号