首页> 外文期刊>Smart Grid and Renewable Energy >Multi Objective Load Shedding Framework
【24h】

Multi Objective Load Shedding Framework

机译:多目标减载框架

获取原文
       

摘要

In this paper, a multi-objective load shedding framework on the power system is presented. The frame work is useable in any kind of smart power systems; the word of smart here refers to the availability of data transmission infrastructure (like PLC or power line carrier) in the system, in order to carry the system data to the load shedding framework. This is an open framework that means it can optimize load shedding problem by considering unlimited number of objective functions, in other word, the number of objectives can be as much as the operator decides, finally in the end of frame work just one matrix breaker state is chosen in a way of having the most compatibility with the operator ideas which are determined by objectives importance percentage which are one input groups of the framework. A two-stage methodology is used for the optimal load shedding problem. In the first stage, Discrete Multi-objective Particle Swarm Optimization method is used to find a collection of the best states of load shedding (Pareto front). In the second stage, the fuzzy logic is used as a Pareto front inference engine. Fuzzy selection algorithm (FSA) is designed in a way that it can infer according to the operator’s opinion without the expert interference that means rule base is formed automatically by fuzzy algorithm. FSA is consisted of two parts. Membership functions and rules base are formed automatically in the first part, the former in accordance with the costs of Pareto front particles and the latter in correspondence with importance percentage of objectives which are entered to FSA by operator; in other word, decision matrix is formed automatically in the algorithm according to the cost of Pareto front particles and importance percentage of objectives. In the Second part, Mamdani inference engine scrutinizes the Pareto front particles by the use of formed membership functions and rules base to know if they are compatible to operator’s opinion or not. Getting this approach, cost functions of each particle are considered as the inputs of (FSA), then a fuzzy combined fitness (FCF) is allocated to each Pareto front particle by Mamdani inference engine. In other word, FCF shows how much the particle is compatible to the operator’s opinion. Finding minimum FCF, final inference is done. The proposed method is tested on 30-bus, and 118-bus IEEE systems by considering two or three objective functions and the results are presented.
机译:本文提出了一种电力系统的多目标减载框架。框架可用于任何类型的智能电源系统。这里的“聪明”一词指的是系统中数据传输基础结构(例如PLC或电力线载波)的可用性,以便将系统数据传输到减载框架。这是一个开放的框架,这意味着它可以通过考虑无限数量的目标函数来优化减载问题,换句话说,目标数目可以与操作员决定的一样多,最后在框架工作的最后只有一个矩阵断路器状态选择的方式与操作员的想法最兼容,该想法由作为框架的一个输入组的目标重要性百分比确定。两阶段方法用于最佳的减载问题。在第一阶段,使用离散多目标粒子群优化方法来找到最佳减荷状态(Pareto前沿)的集合。在第二阶段,将模糊逻辑用作Pareto前置推理引擎。模糊选择算法(FSA)的设计方式是,它可以根据操作员的意见进行推断,而无需专家干预,这意味着规则库是由模糊算法自动形成的。 FSA由两部分组成。成员职能和规则库是在第一部分自动形成的,前一部分根据帕累托前沿粒子的成本,而后者则与操作员输入到FSA的目标的重要百分比相对应;换句话说,根据帕累托前沿粒子的成本和目标的重要性百分比,在算法中自动形成决策矩阵。在第二部分中,Mamdani推理引擎通过使用形成的隶属函数和规则库来检查Pareto前沿粒子,以了解它们是否符合操作员的意见。采用这种方法,将每个粒子的成本函数视为(FSA)的输入,然后通过Mamdani推理引擎将模糊组合适应度(FCF)分配给每个Pareto前沿粒子。换句话说,FCF可以显示多少颗粒符合操作员的意见。找到最小的FCF,完成最终推断。通过考虑两个或三个目标函数,在30总线和118总线IEEE系统上对提出的方法进行了测试,并给出了结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号