首页> 外文期刊>Scientific Drilling >IODP Expedition 330: Drilling the Louisville Seamount Trail in the SW Pacific
【24h】

IODP Expedition 330: Drilling the Louisville Seamount Trail in the SW Pacific

机译:IODP Expedition 330:在西南太平洋钻探路易斯维尔海山步道

获取原文
           

摘要

Deep-Earth convection can be understood by studying hotspot volcanoes that form where mantle plumes rise up and intersect the lithosphere, the Earth's rigid outer layer. Hotspots characteristically leave age-progressive trails of volcanoes and seamounts on top of oceanic lithosphere, which in turn allow us to decipher the motion of these plates relative to "fixed" deep-mantle plumes, and their (isotope) geochemistry provides insights into the long-term evolution of mantle source regions. However, it is strongly suggested that the Hawaiian mantle plume moved ~15° south between 80 and 50 million years ago. This raises a fundamental question about other hotspot systems in the Pacific, whether or not their mantle plumes experienced a similar amount and direction of motion. Integrated Ocean Drilling Program (IODP) Expedition 330 to the Louisville Seamounts showed that the Louisville hotspot in the South Pacific behaved in a different manner, as its mantle plume remained more or less fixed around 48°S latitude during that same time period. Our findings demonstrate that the Pacific hotspots move independently and that their trajectories may be controlled by differences in subduction zone geometry. Additionally, shipboard geochemistry data shows that, in contrast to Hawaiian volcanoes, the construction of the Louisville Seamounts doesn’t involve a shield-building phase dominated by tholeiitic lavas, and trace elements confirm the rather homogenous nature of the Louisville mantle source. Both observations set Louisville apart from the Hawaiian-Emperor seamount trail, whereby the latter has been erupting abundant tholeiites (characteristically up to 95% in volume) and which exhibit a large variability in (isotope) geochemistry and their mantle source components. brbr doia href="http//dx.doi.org/10.2204/iodp.sd.15.02.2013" target="_blank"10.2204/iodp.sd.15.02.2013/a.
机译:通过研究热点火山可以理解深对流,这些热点火山形成在地幔柱上升并与岩石圈(地球的刚性外层)相交的地方。热点的特征是在大洋岩石圈的顶部留下了随着年龄增长的火山和海山的踪迹,这反过来又使我们能够解密这些板块相对于“固定的”深地幔柱的运动,而它们的(同位素)地球化学为长远的发现提供了见识。地幔源区的长期演化。但是,强烈建议夏威夷地幔柱在80到5000万年前之间向南移动了15°。这就提出了一个有关太平洋其他热点系统的根本问题,即它们的地幔柱是否经历了相似的运动量和运动方向。路易斯维尔海山山脉的综合海洋钻探计划(IODP)330考察表明,南太平洋路易斯维尔热点的表现方式有所不同,因为在同一时间段内,其地幔柱大致固定在48°S左右。我们的发现表明,太平洋热点独立运动,其轨迹可能受俯冲带几何形状的差异控制。此外,船上地球化学数据表明,与夏威夷火山形成对比的是,路易斯维尔海山的建造并未涉及以高熔岩为主的盾构建造阶段,而且微量元素证实了路易斯维尔地幔来源的同质性。两次观测都使路易斯维尔与夏威夷-Emperor海山步道区分开来,后者一直在喷发大量的冲孔岩(特征上高达95%的体积),并且在(同位素)地球化学及其地幔源组成方面表现出很大的差异。 doi href="http//dx.doi.org/10.2204/iodp.sd.15.02.2013" target="_blank"> 10.2204 / iodp.sd.15.02.2013 。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号