...
首页> 外文期刊>Science Advances >Optimal transport and colossal ionic mechano-conductance in graphene crown ethers
【24h】

Optimal transport and colossal ionic mechano-conductance in graphene crown ethers

机译:石墨烯冠醚中的最佳迁移和巨大离子机械电导

获取原文

摘要

Biological ion channels balance electrostatic and dehydration effects to yield large ion selectivity alongside high transport rates. These macromolecular systems are often interrogated through point mutations of their pore domain, limiting the scope of mechanistic studies. In contrast, we demonstrate that graphene crown ether pores afford a simple platform to directly investigate optimal ion transport conditions, i.e., maximum current densities and selectivity. Crown ethers are known for selective ion adsorption. When embedded in graphene, however, transport rates lie below the drift-diffusion limit. We show that small pore strains (1%) give rise to a colossal (100%) change in conductance. This process is electromechanically tunable, with optimal transport in a primarily diffusive regime, tending toward barrierless transport, as opposed to a knock-on mechanism. These observations suggest a novel setup for nanofluidic devices while giving insight into the physical foundation of evolutionarily optimized ion transport in biological pores.
机译:生物离子通道平衡了静电和脱水效应,以产生较大的离子选择性以及高传输速率。这些大分子系统经常通过其孔结构域的点突变而受到询问,从而限制了机理研究的范围。相反,我们证明了石墨烯冠醚孔提供了一个简单的平台,可以直接研究最佳的离子传输条件,即最大电流密度和选择性。冠醚已知用于选择性离子吸附。但是,当嵌入石墨烯中时,传输速率低于漂移扩散极限。我们表明,小孔应变(1%)引起电导的巨大变化(100%)。该过程是机电可调的,在主要扩散状态下具有最佳运输,与无敲打机制相反,倾向于无障碍运输。这些观察结果提出了一种纳米流体装置的新颖装置,同时提供了对生物孔隙中进化优化的离子传输的物理基础的洞察力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号