...
首页> 外文期刊>Science Advances >Hierarchies in light sensing and dynamic interactions between ocular and extraocular sensory networks in a flatworm
【24h】

Hierarchies in light sensing and dynamic interactions between ocular and extraocular sensory networks in a flatworm

机译:扁虫中光感的层次结构以及眼和眼外感觉网络之间的动态相互作用

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Light sensing has independently evolved multiple times under diverse selective pressures but has been examined only in a handful among the millions of light-responsive organisms. Unsurprisingly, mechanistic insights into how differential light processing can cause distinct behavioral outputs are limited. We show how an organism can achieve complex light processing with a simple “eye” while also having independent but mutually interacting light sensing networks. Although planarian flatworms lack wavelength-specific eye photoreceptors, a 25 nm change in light wavelength is sufficient to completely switch their phototactic behavior. Quantitative photoassays, eye-brain confocal imaging, and RNA interference/knockdown studies reveal that flatworms are able to compare small differences in the amounts of light absorbed at the eyes through a single eye opsin and convert them into binary behavioral outputs. Because planarians can fully regenerate, eye-brain injury-regeneration studies showed that this acute light intensity sensing and processing are layered on simple light detection. Unlike intact worms, partially regenerated animals with eyes can sense light but cannot sense finer gradients. Planarians also show a “reflex-like,” eye-independent (extraocular/whole-body) response to low ultraviolet A light, apart from the “processive” eye-brain–mediated (ocular) response. Competition experiments between ocular and extraocular sensory systems reveal dynamic interchanging hierarchies. In intact worms, cerebral ocular response can override the reflex-like extraocular response. However, injury-regeneration again offers a time window wherein both responses coexist, but the dominance of the ocular response is reversed. Overall, we demonstrate acute light intensity–based behavioral switching and two evolutionarily distinct but interacting light sensing networks in a regenerating organism.
机译:在不同的选择压力下,光感测已经独立演化了多次,但仅在数百万种光响应生物中进行了极少数的研究。毫不奇怪,关于差分光处理如何导致明显的行为输出的机械见解有限。我们展示了有机体如何通过简单的“眼睛”实现复杂的光处理,同时又具有独立但相互作用的光感测网络。尽管涡虫扁虫缺乏特定于波长的眼睛感光器,但光波长的25 nm变化足以完全切换其光战术行为。定量光检测,眼脑共聚焦成像以及RNA干扰/抑制研究表明,扁虫能够比较通过单眼视蛋白在眼睛吸收的光量的细微差异,并将其转换为二进制行为输出。由于涡虫可以完全再生,因此眼脑损伤再生研究表明,这种急性光强度的传感和处理是基于简单的光检测进行的。与完整的蠕虫不同,用眼睛部分再生的动物可以感知光线,但无法感知更精细的渐变。平面主义者还表现出对低紫外线A光的“反射样”,与眼睛无关的(眼外/全身)反应,以及“过程性”眼脑介导的(眼)反应。眼和眼外感觉系统之间的竞争实验揭示了动态互换的层次结构。在完整的蠕虫中,大脑的眼部反应可以超过反射样眼外反应。然而,损伤再生再次提供了两个响应共存的时窗,但是眼响应的优势却相反。总的来说,我们展示了基于急性光强度的行为切换,以及再生生物中两个在进化上截然不同但相互作用的光传感网络。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号