...
首页> 外文期刊>Science Advances >Designer interphases for the lithium-oxygen electrochemical cell
【24h】

Designer interphases for the lithium-oxygen electrochemical cell

机译:锂氧电化学电池的设计器中间相

获取原文

摘要

An electrochemical cell based on the reversible oxygen reduction reaction: 2Li+ + 2e? + O2 ? Li2O2, provides among the most energy dense platforms for portable electrical energy storage. Such Lithium-Oxygen (Li-O2) cells offer specific energies competitive with fossil fuels and are considered promising for electrified transportation. Multiple, fundamental challenges with the cathode, anode, and electrolyte have limited practical interest in Li-O2 cells because these problems lead to as many practical shortcomings, including poor rechargeability, high overpotentials, and specific energies well below theoretical expectations. We create and study in-situ formation of solid-electrolyte interphases (SEIs) based on bromide ionomers tethered to a Li anode that take advantage of three powerful processes for overcoming the most stubborn of these challenges. The ionomer SEIs are shown to protect the Li anode against parasitic reactions and also stabilize Li electrodeposition during cell recharge. Bromine species liberated during the anchoring reaction also function as redox mediators at the cathode, reducing the charge overpotential. Finally, the ionomer SEI forms a stable interphase with Li, which protects the metal in high Gutmann donor number liquid electrolytes. Such electrolytes have been reported to exhibit rare stability against nucleophilic attack by Li2O2 and other cathode reaction intermediates, but also react spontaneously with Li metal anodes. We conclude that rationally designed SEIs able to regulate transport of matter and ions at the electrolyte/anode interface provide a promising platform for addressing three major technical barriers to practical Li-O2 cells.
机译:基于可逆氧还原反应的电化学电池:2Li + + 2e ? + O 2 ? Li 2 O 2 ,是便携式电能存储中能量密度最高的平台之一。这种锂氧(Li-O 2 )电池可提供与化石燃料竞争的特定能量,并被认为有望实现电气化运输。阴极,阳极和电解质面临的多个基本挑战限制了Li-O 2 电池的实际应用,因为这些问题导致许多实际的缺陷,包括可充电性差,超电势高以及比能良好低于理论预期。我们创建和研究基于束缚在Li阳极上的溴离子离聚物的固体电解质中间相(SEI)的原位形成,该电解质利用三个强大的过程来克服这些挑战中最顽固的挑战。已显示离聚物SEI可以保护Li阳极免受寄生反应,并在电池充电期间稳定Li电沉积。在锚定反应过程中释放的溴物质还充当阴极的氧化还原介体,从而减少了电荷超电势。最后,离聚物SEI与Li形成稳定的中间相,从而保护了高Gutmann供体数液体电解质中的金属。据报道,这种电解质对Li 2 O 2 和其他阴极反应中间体的亲核攻击表现出罕见的稳定性,但也能与Li金属阳极自发反应。我们得出结论,合理设计的SEI能够调节电解质/阳极界面处的物质和离子的运输,为解决针对实际Li-O 2 电池的三大技术障碍提供了一个有希望的平台。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号