首页> 外文期刊>Open Access Library Journal >Experimental Investigation of Photostrictive Materials for MEMS Application
【24h】

Experimental Investigation of Photostrictive Materials for MEMS Application

机译:用于MEMS的光致伸缩材料的实验研究

获取原文
       

摘要

Micro-Electro-Mechanical-Systems (MEMS) is an emerging technology that integrates micromachined mechanical structures with integrated circuits (IC). During the last two decades, it has grown vastly as a prominent research area among scientists and engineers. Usually the main components of MEMS are sensors, actuators, and structures with all in microscale. A photostrictive mate-rial has high potential to be used in a MEMS application to develop an ad-vanced optical actuator. A strain is induced when a photostrictive material is il-luminated by high intensity light, which is known as photostriction. This phe-nomenon can be generally described as the combined effect of the photovoltaic effect and the converge-piezoelectric effect. When an incident light strikes a photostrictive material, a photovoltage is produced and this photovoltage develops strain in the material. Lanthanum modified lead zirconate titanate (Pb, La) (Zr, Ti) O3 ceramic doped with WO3, called PLZT, is one of the photostrictive ceramics which has an advantageous use as a wireless remote control over traditional actuators. Traditional actuators require wire connections to transmit the control signal; these wires yield noise via external electromagnetic fields. Whereas, PLZT actuators can transmit the control signal without wires which can eliminate possible noise due to the external electromagnetic field. In this current research, the photostrictive effect of a thin PLZT film on a silicon wafer is investigated experimentally. The transverse deflection of the PLZT optical actuator cantilever beam has been measured for stationary continuous light as well as for pulses of light using an optical chopper at various light intensities and focused locations. Results indicate that transverse deflection increases with the increase of light intensity. Also, the maximum transverse deflection at the free end of the cantilever beam for stationary light has been found to be three times larger than that for the pulses of light.
机译:微机电系统(MEMS)是一种新兴技术,将微机械结构与集成电路(IC)集成在一起。在过去的二十年中,它已迅速发展成为科学家和工程师中的重要研究领域。通常,MEMS的主要组件是传感器,执行器和全部具有微尺度的结构。光致伸缩材料具有很高的潜力,可用于MEMS应用中以开发先进的光学致动器。当光致伸缩材料被高强度光照射时,会引起应变,这被称为光解。该现象通常可以描述为光伏效应和会聚压电效应的组合效应。当入射光撞击光致伸缩材料时,会产生光电压,并且该光电压会在材料中产生应变。掺有WO3的镧改性的钛酸锆钛酸铅(Pb,La)(Zr,Ti)O3陶瓷,称为PLZT,是一种光致伸缩陶瓷,具有作为传统执行器的无线遥控器的优势。传统的执行器需要通过导线连接来传输控制信号。这些导线通过外部电磁场产生噪声。而PLZT执行器可以不用电线传输控制信号,从而可以消除由于外部电磁场而产生的噪声。在当前的研究中,实验研究了PLZT薄膜对硅晶片的光致伸缩效应。 PLZT光学致动器悬臂梁的横向偏转已针对固定的连续光以及使用光斩波器在各种光强度和聚焦位置的光脉冲进行了测量。结果表明,横向挠度随光强度的增加而增加。而且,已经发现对于固定光,在悬臂梁的自由端的最大横向偏转比对于光脉冲的最大横向偏转大三倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号