首页> 外文期刊>Oeno One >Unexpected relationships between vine vigor and grape composition in warm climate conditions
【24h】

Unexpected relationships between vine vigor and grape composition in warm climate conditions

机译:温暖气候条件下葡萄藤活力与葡萄成分之间的意外关系

获取原文
           

摘要

Aim: The purpose of the research was to link vigor with grape composition in a climate change scenario.Methods and results: This work presents a 4-year study (from 2010 to 2013) in a non-irrigated Tempranillo vineyard located in La Rioja (Spain). It is based on the acquisition of multi-spectral imagery at véraison and a subsequent zoning in two different vigor zones based on NDVI (Normalized Difference Vegetation Index). All parameters related to vigor showed significant differences within the zones (total shoot length, leaf area, pruning weight). Unexpectedly, the content in anthocyanins was found to be higher in the highest vigor zone in most of the years of study, a point particularly?discussed in this work.Conclusion: Climatic conditions may affect considerably bunch microclimate and disturb the biosynthetic pathways of major grape components, leading to maturation mismatches. In hotter years, high vigor vines may favor anthocyanin accumulation through shading and protecting effects in the bunch area.Significance and impact of the study: Many studies have shown a negative relationship between vigor and grape anthocyanins, but in the present research the opposite trend was observed in hot years. IntroductionVineyard spatial variability has always concerned grape growers and has been considered in many recent researches in viticulture. The sources of this variation involve climate, land (topography and soil composition, including water and nutrient availability), and diseases. Previous research has focused on vine vegetative expression and vigor variability, but also on yield and grape characteristics (Tisseyre et al., 2008; Bramley et al., 2011; Arnó et al., 2012).One of the most easy, fast and feasible tools to assess vineyard variation is remote sensing. Spectral sensors mounted on satellites, or cameras in airplanes or drones, collect information of vegetation reflectance in a range of wavelengths. These data are translated into a single number or index, the most commonly used being the NDVI (Normalized Difference Vegetation Index), which involves infrared and near-infrared wavelength (Rouse et al., 1974). NDVI provides accurate information about photosynthetically active biomass and canopy size (Dobrowski et al., 2003; Hall et al., 2003; Johnson et al., 2003), that is, vegetative expression. Authors have tried to assess NDVI as a predictor of other vineyard characteristics, such as yield (Proffitt and Malcolm, 2005) and grape composition, specially anthocyanins and polyphenols (Johnson et al., 2003; Lamb et al., 2004; Bramley, 2005; Hall et al., 2011; Fiorillo et al., 2012; Martinez-Casasnovas et al., 2012), with variable results.The effort to relate NDVI as a predictor of grape composition has not always been successful since the factors influencing grape quality are numerous and complex. It is assumed that the ratio between leaf area and yield needs to reach a minimum threshold to assure proper ripening (Kliewer and Dokoozlian, 2005). In this concern, vegetation indices could give valuable information. Regarding anthocyanins, their synthesis and accumulation is highly dependent on temperature and light. In this respect, most of the studies relating vigor and grape quality have revealed that high vigor vines present less anthocyanin content than low vigor vines (Lamb et al., 2004; Stamatiadis et al., 2006; Cortell et al., 2007; Hall et al., 2011; Martinez-Casanovas et al., 2012; Filippetti et al., 2013). This may be explained by the fact that most of these studies have been carried out in rather cold climates, where bunch light exposure and temperature are limiting factors. Moreover, these studies usually analyze anthocyanins in terms of concentration (mg/kg or mL/kg), so berry size has a major influence on these values. Anthocyanins being only present in the skin, the smaller the berry, the smaller the volume (and liquid phase), and thus the higher the skin:pulp ratio, leading to higher anthocyanin concentrations in the obtained musts (Coombe and Iland, 2004). Then, it would be more appropriate to consider absolute anthocyanin synthesis (for instance, mg/cm2 of skin) for a better comprehension of the synthesis of this compound from a plant physiological point of view. Besides, climate is facing a global warming in which grape growing regions boundaries are changing, and predictions reveal an increase of about +2.5°C in the next decades (IPCC, 2007). Temperate and warm climates are experiencing unusual temperature increases, causing decoupling between sugars and anthocyanins and altering their accumulation and degradation pathways (Schultz and Jones, 2010).Thus, several studies reveal that anthocyanin synthesis positively depends on temperature, but it is restrained by temperatures above 26°C (Kliewer and Torres, 1972; Iland and Gago, 2002; Sadras and McCarthy, 2007). Temperatures above 30°C may lead to less concentration in anthocyanins by impairing their biosynthetic pathways and promoting their
机译:目的:本研究的目的是在气候变化的情景中将活力与葡萄成分联系起来。方法与结果:这项工作是对位于拉里奥哈(La Rioja)(西班牙)。它基于在垂直方向上获取多光谱图像以及随后基于NDVI(归一化植被指数)在两个不同的活力区域中进行分区的功能。与活力相关的所有参数在区域内均显示出显着差异(总枝长,叶面积,修剪重量)。出乎意料的是,在大多数研究年份中,在最高活力区中发现花青素的含量较高,这一点在本研究中尤为讨论。结论:气候条件可能会影响相当多的小气候并干扰主要葡萄的生物合成途径组件,导致成熟度不匹配。在较热的年份,高活力的葡萄树可能会通过束缚和遮蔽保护花青素,从而促进花青素的积累。研究的意义和影响:许多研究表明活力与葡萄花青素之间存在负相关关系,但在目前的研究中,相反的趋势是在炎热的年份中观察到。引言葡萄园的空间变异性一直是葡萄种植者关注的问题,并且在葡萄栽培的许多最新研究中都已考虑到了这一问题。这种变化的来源涉及气候,土地(地形和土壤成分,包括水和养分的供应)以及疾病。以前的研究集中在葡萄的营养表达和活力变化上,但也集中在产量和葡萄特性上(Tisseyre等人,2008; Bramley等人,2011;Arnó等人,2012)。评估葡萄园变化的可行工具是遥感。安装在卫星上的光谱传感器,或飞机或无人机上的摄像机,可收集一定波长范围内的植物反射率信息。这些数据被转换成一个数字或索引,最常用的是NDVI(归一化植被指数),它涉及红外和近红外波长(Rouse等,1974)。 NDVI提供有关光合作用生物量和冠层大小的准确信息(Dobrowski等,2003; Hall等,2003; Johnson等,2003),即营养表达。作者试图将NDVI评估为其他葡萄园特征的预测指标,例如产量(Proffitt和Malcolm,2005)和葡萄成分,特别是花色苷和多酚(Johnson等,2003; Lamb等,2004; Bramley,2005)。 ; Hall等人,2011; Fiorillo等人,2012; Martinez-Casasnovas等人,2012),结果却不尽相同。由于影响葡萄的因素,将NDVI用作预测葡萄成分的方法并非总是成功。质量繁杂。假定叶面积和产量之间的比率需要达到最小阈值以确保适当的成熟(Kliewer和Dokoozlian,2005)。因此,植被指数可以提供有价值的信息。关于花青素,它们的合成和积累高度依赖于温度和光。在这方面,大多数有关活力和葡萄品质的研究表明,高活力葡萄藤的花色苷含量低于低活力葡萄藤(Lamb等,2004; Stamatiadis等,2006; Cortell等,2007; Hall)。等人,2011; Martinez-Casanovas等人,2012; Filippetti等人,2013)。可以通过以下事实来解释这一点:大多数研究是在相当寒冷的气候条件下进行的,在寒冷气候条件下,一束光照和温度是限制因素。此外,这些研究通常以浓度(mg / kg或mL / kg)分析花色苷,因此浆果大小会对这些值产生重大影响。花青素仅存在于皮肤中,浆果越小,体积(和液相)越小,因此,皮肤:纸浆比越高,导致所获得的芥末中花青素浓度更高(Coombe and Iland,2004)。然后,为了从植物生理学的角度更好地理解该化合物的合成,考虑绝对的花色苷合成(例如皮肤的mg / cm 2)将是更合适的。此外,气候正面临全球变暖,葡萄生长区域的边界正在变化,并且预测显示未来几十年温度将上升+ 2.5°C(IPCC,2007)。温带和温暖的气候正经历着异常的温度升高,导致糖和花色苷之间的解偶联并改变了它们的积累和降解途径(Schultz and Jones,2010)。因此,一些研究表明花色苷的合成与温度呈正相关关系,但受温度的限制。温度高于26°C(Kliewer和Torres,1972; Iland和Gago,2002; Sadras和McCarthy,2007)。温度高于30°C可能会削弱花青素的生物合成途径并促进其生长,从而导致花青素浓度降低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号