首页> 外文期刊>Oeno One >Meteorological conditions determine the thermal-temporal position of the annual Botrytis bunch rot epidemic on Vitis vinifera L. cv. Riesling grapes
【24h】

Meteorological conditions determine the thermal-temporal position of the annual Botrytis bunch rot epidemic on Vitis vinifera L. cv. Riesling grapes

机译:气象条件决定了葡萄(Vitis vinifera L. cv)上一年生葡萄孢菌腐烂流行的热时间位置。雷司令葡萄

获取原文
           

摘要

Aims:Under Central European climatic conditions, bunch rot caused by Botrytis cinerea occurs virtually every season on Vitis vinifera L. cv. Riesling grapes. Statistical investigations based on at least three annual disease severity assessments in 7 seasons (2007-2013) aimed at (i) simulating the disease progress and (ii) identifying meteorological conditions with predictive value for epidemics.Methods and results:Sigmoidal regression models were used to describe the disease progress as function of thermal time. Coefficients of determination were > 0.97. The thermal time adjusted pace of the epidemic was almost constant in all seasons while the point of time when 5% disease severity was reached varied among years. Window pane analyses showed that relatively low temperatures and wet conditions during bloom as well as relatively high temperatures and low precipitation sums around/after veraison were associated with thermal-temporally late epidemics.Conclusions:Environmental conditions determine the timing of annual bunch rot epidemics. Analyses indicate a strong link between meteorological conditions around grape bloom (probably affecting fruit set and cluster structure) and the predisposition of the grape clusters to bunch rot.Significance and impact of the study:The enhanced understanding of the effect of environmental conditions on the bunch rot epidemics supports growers to optimize control measures and is supposed to result in a Botrytis bunch rot model. IntroductionBunch rot also referred to as Botrytis bunch rot or grey mould caused by Botrytis cinerea Pers.:Fr. (teleomorph: Botryotinia fuckeliana (de Bary) Whetzel) is a major fungal disease on more than 200 mainly dicotyledonous plant species (Williamson et al., 2007) including grapevine (Vitis vinifera L.), where it causes severe economic damage worldwide (Kassemeyer and Berkelmann-L?hnertz, 2009). Besides the loss of yield, B. cinerea can reduce wine quality in terms of off-flavors, unstable color, oxidative damages, premature aging and difficulties in clarification (Ribéreau-Gayon, 1983; Smart and Robinson, 1991; Ky et al., 2012).B. cinerea is considered as an opportunistic pathogen infecting plant tissues primarily via wounds (Elmer and Michailides, 2007; Evans, 2008). Grape flowers are susceptible to infections since they represent natural apertures and provide sugars, which foster the colonization (Keller et al., 2003; Viret et al., 2004). Between fruit set and veraison, young, immature grape berries are highly resistant to B. cinerea (Hill et al., 1981). Here, constitutive and inducible defense mechanisms (Elmer and Michailides, 2007) leading to a stop of the infection in the penetration stage (Kelloniemi et al., 2015) account for a low susceptibility. Since the levels of fungistatic substances decline with maturity and micro-cracks in the berry skin occur more frequently after veraison, host defense progressively breaks down with grape maturation (Kretschmer et al., 2007). Hence, infections of ripe berries are most common and destructive (Shtienberg, 2007).Under the climatic conditions of many traditional (non-irrigated) grapegrowing regions, grape bunch rot occurs virtually every season. The time course of the B. cinerea disease severity was shown to be well described by logit, exponential or sigmoidal functions (Beresford et al., 2006; Evers et al., 2010; Hill and Beresford, 2010; Molitor et al., 2015a). However, the starting point of bunch rot outbreaks is considered as highly unpredictable (Redl et al., 2014), and forecasting the severity of bunch rot at harvest continues to represent a challenge (Evans, 2008).Since the development of grape bunch rot on grapes cannot be suppressed completely under the climatic conditions of many viticultural regions, bunch rot control strategies primarily aim at delaying the epidemic as much as possible to take benefit of a long-lasting maturation period prior to enforced (due to the declining grape health status) harvest date (Molitor et al., 2015a). In the past, control strategies were mainly based on routine applications of fungicides at pre-determined intervals (Shtienberg, 2007). Since pesticide use shall be minimized in Integrated Pest Management, excessive chemical treatments are becoming increasingly criticized and restricted (Elmer and Michailides, 2007; Shtienberg, 2007). A reduction of fungicide use in integrated bunch rot control strategies could be realized by (i) crop cultural measures that suppress fungal infections and spread and (ii) more targeted timing of botryticide treatments based on reliable forecast and decision support systems. For instance, the decision for botryticide applications could be guided by a warning system, which attempts to recognize weather conditions highly conductive for spore germination and to schedule fungicide applications accordingly (Shtienberg, 2007). Such efficient decision support systems for targeted control strategies need to incorporate the (potentially
机译:目的:在中欧气候条件下,葡萄灰霉病引起的串腐几乎每个季节都在葡萄(Vitis vinifera L. cv)上发生。雷司令葡萄。统计调查基于在7个季节(2007-2013年)中至少进行了三次年度疾病严重程度评估,旨在(i)模拟疾病进展和(ii)确定对流行病具有预测价值的气象条件。方法和结果:使用S型回归模型用热时间来描述疾病的进展。测定系数> 0.97。在所有季节中,热时间调整的流行速度几乎都是恒定的,而疾病严重程度达到5%的时间点在不同年份之间也有所不同。窗玻璃分析表明,开花期相对较低的温度和湿润条件以及花期前后的相对较高的温度和较低的降水量与热时间性晚疫病有关。结论:环境条件决定了一年一度的群腐病流行的时间。分析表明,葡萄开花周围的气象条件(可能会影响果实结实和簇结构)与葡萄簇易发生串腐的倾向之间存在密切联系。研究的意义和影响:增强对环境条件对串的影响的理解腐烂病流行病可以帮助种植者优化控制措施,并有望导致葡萄孢菌的出现。简介腐烂病也称为灰葡萄孢(Botrytis cinerea Pers.:Fr。 (teleomorph:Botryotinia fuckeliana(de Bary)Whetzel)是200多种主要双子叶植物物种(Williamson等,2007)的主要真菌病,包括葡萄(Vitis vinifera L.),在全球范围内造成严重的经济损失(Kassemeyer和Berkelmann-L?hnertz,2009年)。除了产量下降以外,灰葡萄双歧杆菌还可以通过异味,颜色不稳定,氧化损伤,过早老化和澄清困难等方面降低葡萄酒质量(Ribéreau-Gayon,1983; Smart和Robinson,1991; Ky等, 2012)灰质被认为是主要通过伤口感染植物组织的机会病原体(Elmer and Michailides,2007; Evans,2008)。葡萄花很容易受到感染,因为它们代表自然的孔并提供糖分,从而促进了定殖(Keller等,2003; Viret等,2004)。在果实定植和变种之间,未成熟的年轻葡萄浆果对灰质芽孢杆菌具有高度抗性(Hill等,1981)。在这里,导致渗透停止的感染的构成性和诱导性防御机制(Elmer和Michailides,2007)(Kelloniemi等,2015)导致了低敏感性。由于抑真菌物质的含量随着成熟而降低,浆果果皮中的微裂纹在发芽后更频繁地发生,因此随着葡萄的成熟,宿主防御逐渐被破坏(Kretschmer等,2007)。因此,成熟浆果的感染是最常见和破坏性的(Shtienberg,2007)。在许多传统(非灌溉)葡萄种植区的气候条件下,葡萄串腐烂几乎每个季节都会发生。灰葡萄孢病严重程度的时间过程已通过对数,指数或S形函数得到很好的描述(Beresford等,2006; Evers等,2010; Hill和Beresford,2010; Molitor等,2015a )。然而,串腐病爆发的起点被认为是高度不可预测的(Redl等人,2014),并且在收获时预测串腐病的严重程度仍然是一个挑战(Evans,2008)。在许多葡萄栽培地区的气候条件下,不能完全抑制葡萄上的病害,串腐控制策略的主要目的是尽可能地延缓流行病的发生,以便在实施前充分利用成熟期(由于葡萄健康状况的下降) )收获日期(Molitor et al。,2015a)。过去,控制策略主要基于在预定间隔内常规施用杀真菌剂(Shtienberg,2007)。由于在病虫害综合防治中应尽量减少农药的使用,过度的化学处理方法受到越来越多的批评和限制(Elmer和Michailides,2007; Shtienberg,2007)。通过(i)抑制真菌感染和扩散的作物栽培措施,以及(ii)基于可靠的预测和决策支持系统更有针对性地使用杀菌剂,可以减少农药在综合束腐病控制策略中的使用。例如,可以在预警系统的指导下决定是否使用杀菌剂,该系统试图识别出对孢子萌发非常有利的天气条件,并相应地安排杀菌剂的使用时间(Shtienberg,2007)。这种针对目标控制策略的有效决策支持系统需要合并(潜在地

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号