首页> 外文期刊>Ocean Science Discussions >Numerical investigation of the Arctic ice–ocean boundary layer and implications for air–sea gas fluxes
【24h】

Numerical investigation of the Arctic ice–ocean boundary layer and implications for air–sea gas fluxes

机译:北极冰洋边界层的数值研究及其对海气通量的影响

获取原文
           

摘要

In ice-covered regions it is challenging to determine constituent budgets – for heat and momentum, but also for biologically and climatically active gases like carbon dioxide and methane. The harsh environment and relative data scarcity make it difficult to characterize even the physical properties of the ocean surface. Here, we sought to evaluate if numerical model output helps us to better estimate the physical forcing that drives the air–sea gas exchange rate (k) in sea ice zones. We used the budget of radioactive 222Rn in the mixed layer to illustrate the effect that sea ice forcing has on gas budgets and air–sea gas exchange. Appropriate constraint of the 222Rn budget requires estimates of sea ice velocity, concentration, mixed-layer depth, and water velocities, as well as their evolution in time and space along the Lagrangian drift track of a mixed-layer water parcel. We used 36, 9 and 2km horizontal resolution of regional Massachusetts Institute of Technology general circulation model (MITgcm) configuration with fine vertical spacing to evaluate the capability of the model to reproduce these parameters. We then compared the model results to existing field data including satellite, moorings and ice-tethered profilers. We found that mode sea ice coverage agrees with satellite-derived observation 88 to 98% of the time when averaged over the Beaufort Gyre, and model sea ice speeds have 82% correlation with observations. The model demonstrated the capacity to capture the broad trends in the mixed layer, although with a significant bias. Model water velocities showed only 29% correlation with point-wise in situ data. This correlation remained low in all three model resolution simulations and we argued that is largely due to the quality of the input atmospheric forcing. Overall, we found that even the coarse-resolution model can make a modest contribution to gas exchange parameterization, by resolving the time variation of parameters that drive the 222Rn budget, including rate of mixed-layer change and sea ice forcings.
机译:在冰雪覆盖的地区,确定组成预算是一项挑战,既要确定热量和动量,也要确定诸如二氧化碳和甲烷等生物和气候活性气体。严酷的环境和相对的数据稀缺性使得甚至很难表征海洋表面的物理性质。在这里,我们试图评估数值模型输出是否可以帮助我们更好地估计驱动海冰区域中海气交换率(k)的物理强迫。我们使用混合层中放射性222Rn的预算来说明海冰强迫对天然气预算和海气交换的影响。适当的222Rn预算约束要求估算海冰速度,浓度,混合层深度和水速,以及它们沿混合层水域拉格朗日漂移轨迹的时空演变。我们使用马萨诸塞州技术学院区域常规循环模型(MITgcm)配置的36、9和2km的水平分辨率以及良好的垂直间距来评估该模型复制这些参数的能力。然后,我们将模型结果与现有的野外数据进行了比较,包括卫星,系泊设备和冰缆廓线仪。我们发现,在Beaufort Gyre上进行平均时,模式海冰覆盖率与卫星观测的观测值相符88%至98%,并且模型海冰速度与观测值具有82%的相关性。该模型展示了捕获混合层中广泛趋势的能力,尽管存在明显偏差。模型水速度与点状原位数据仅显示29%的相关性。在所有三个模型分辨率模拟中,这种相关性仍然很低,我们认为这主要是由于输入大气强迫的质量所致。总体而言,我们发现,即使是粗分辨率模型,也可以通过解决驱动222Rn预算的参数随时间变化(包括混合层变化率和海冰强迫)来为气体交换参数化做出适度的贡献。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号