首页> 外文期刊>Ocean science >Precipitation of solid phase calcium carbonates and their effect on application of seawater iSsubA/sub/i–iT/i–iP/i models
【24h】

Precipitation of solid phase calcium carbonates and their effect on application of seawater iSsubA/sub/i–iT/i–iP/i models

机译:固相碳酸钙的沉淀及其对海水 S A T P 模型应用的影响

获取原文
       

摘要

At the present time, little is known about how broad salinity andtemperature ranges are for seawater thermodynamic models that are functionsof absolute salinity (SA), temperature (T) and pressure (P). Suchmodels rely on fixed compositional ratios of the major components (e.g.,Na/Cl, Mg/Cl, Ca/Cl, SO4/Cl, etc.). As seawater evaporates or freezes,solid phases [e.g., CaCO3(s) or CaSO42H2O(s)] will eventuallyprecipitate. This will change the compositional ratios, and these salinitymodels will no longer be applicable. A future complicating factor is thelowering of seawater pH as the atmospheric partial pressures of CO2increase. A geochemical model (FREZCHEM) was used to quantify the SA−Tboundaries at P=0.1 MPa and the range of these boundaries for futureatmospheric CO2 increases. An omega supersaturation model forCaCO3 minerals based on pseudo-homogeneous nucleation was extended from25–40°C to 3°C. CaCO3 minerals were the boundary definingminerals (first to precipitate) between 3°C (at SA=104 g kg−) and 40°C (at SA=66 g kg−). At 2.82°C,calcite(CaCO3) transitioned to ikaite(CaCO36H2O) as thedominant boundary defining mineral for colder temperatures, which culminatedin a low temperature boundary of −4.93°C. Increasing atmosphericCO2 from 385 μatm (390 MPa) (in Year 2008) to 550 μatm(557 MPa) (in Year 2100) would increase the SA and t boundaries as much as11 g kg−1 and 0.66°C, respectively. The model-calculatedcalcite-ikaite transition temperature of 2.82°C is in excellentagreement with ikaite formation in natural environments that occurs attemperatures of 3°C or lower. Furthermore, these results provide aquantitative theoretical explanation (FREZCHEM model calculation) for whyikaite is the solid phase CaCO3 mineral that precipitates duringseawater freezing.
机译:目前,关于海水热力学模型的盐度和温度范围有多大还不为人所知,海水热力学模型是绝对盐度( S A ),温度( T < / i>)和压力( P )。这些模型依赖于主要成分的固定组成比(例如Na / Cl,Mg / Cl,Ca / Cl,SO 4 / Cl等)。随着海水蒸发或冻结,固相[例如,CaCO 3 (s)或CaSO 4 2H 2 O(s)”最终会沉淀。这将改变组成比,并且这些盐度模型将不再适用。未来的复杂因素是随着CO 2 的大气分压的增加海水pH值降低。地球化学模型(FREZCHEM)用于定量在 P = 0.1 MPa且 P 时的 S A - T 边界未来大气CO 2 的这些边界范围增加。基于假均质成核的CaCO 3 矿物的ω过饱和模型从25–40°C扩展到3°C。 CaCO 3 矿物是3°C(在 S A = 104 g kg -< / sup>)和40°C(在 S A = 66 g kg -下)。在2.82°C时,方解石(CaCO 3 )转变为ikaite(CaCO 3 6H 2 O)作为确定较低温度矿物的主要边界,最终达到-4.93°C的低温边界。将大气中的CO 2 从385μatm(390 MPa)(2008年)增加到550μatm(557 MPa)(2100年)会增加 S A < / i>和t边界分别高达11 g kg -1 和0.66°C。模型计算得出的方解石-方解石转变温度为2.82°C,与3°C或更低的自然环境中的方解石形成极为吻合。此外,这些结果提供了定量的理论解释(FREZCHEM模型计算),说明了为什么ikaite是在海水冻结期间沉淀的固相CaCO 3 矿物。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号