首页> 外文期刊>Reviews on Advanced Materials Science >A Homogenization Scheme for the Plastic Properties of Nanocrystalline Materials
【24h】

A Homogenization Scheme for the Plastic Properties of Nanocrystalline Materials

机译:纳米晶材料塑性特性的均质方案

获取原文
获取外文期刊封面目录资料

摘要

In this review we highlight a micromechanics-based homogenization scheme that has wide applicability for calculations of the overall rate-independent plasticity, time-dependent creep, strain-rate sensitivity, effect of porosity, and void growth for nanocrystalline materials. Based on the morphology disclosed in molecular dynamic simulation, we establish a composite model to represent the grain interior and the grain-boundary zone (GB zone). The nonlinear rate-independent plasticity is formulated in terms of the secant moduli of the constituent phases, whereas the rate-dependent viscoplasticity is formulated in terms of their secant viscosity. In both cases the heterogeneous stress and strain fields of the constituent phases are analytically determined. Through two related field fluctuation approaches, the effective stresses of the grain interior and the GB zone are derived through the variation of the overall secant moduli and the overall secant viscosity with respect to the constituent property. The overall behavior then can be calculated from the effective secant moduli or effective secant viscosity. We demonstrate how this approach provides the overall stress-strain relation as the grain size decreases from the coarse grain to the nano-meter range, and how the slope of the Hall-Petch plot continues to decrease and eventually turns into negative below certain critical grain size. This critical grain size also gives rice to the maximum yield strength, and is an important factor in material design. We also show how the creep resistance increases with decreasing grain size and then decline, how the strain-rate sensitivity of the nanocrystalline materials is affected by grain size, and how porosity and grain size compete with each other under a constant strain rate loading. We conclude by the study of void growth during viscoplastic deformation of nanocrystalline materials.
机译:在这篇综述中,我们着重介绍了一种基于微力学的均质方案,该方案对于计算与速率无关的整体可塑性,与时间有关的蠕变,应变速率敏感性,孔隙率的影响以及纳米晶体材料的空洞生长具有广泛的适用性。基于分子动力学模拟中公开的形态,我们建立了一个代表晶粒内部和晶粒边界区域(GB区域)的复合模型。非线性的与速率无关的可塑性是根据组成相的割线模量来表示的,而与速率无关的粘塑性是根据它们的割线粘度来表达的。在两种情况下,都通过分析确定了组成相的非均质应力场和应变场。通过两种相关的场波动方法,通过总体割线模量和总体割线粘度相对于组成性质的变化,得出了晶粒内部和GB区的有效应力。然后可以从有效割线模量或有效割线粘度计算总体性能。我们演示了这种方法如何在晶粒尺寸从粗晶粒减小到纳米范围时提供整体应力-应变关系,以及霍尔-普奇图的斜率如何继续减小并最终在某些临界晶粒以下变成负值尺寸。该临界粒度还使大米具有最大的屈服强度,并且是材料设计中的重要因素。我们还显示了抗蠕变性如何随晶粒尺寸的减小而增加,然后下降,纳米晶粒材料的应变速率敏感性如何受晶粒尺寸的影响,以及在恒定应变速率载荷下孔隙率和晶粒尺寸如何相互竞争。我们通过研究纳米晶体材料的粘塑性变形过程中的空隙生长来得出结论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号