...
首页> 外文期刊>Remote Sensing >Improving the Performance of Multi-GNSS (Global Navigation Satellite System) Ambiguity Fixing for Airborne Kinematic Positioning over Antarctica
【24h】

Improving the Performance of Multi-GNSS (Global Navigation Satellite System) Ambiguity Fixing for Airborne Kinematic Positioning over Antarctica

机译:提高南极航空运动定位的多GNSS(全球导航卫星系统)歧义性的性能

获取原文
           

摘要

Conventional relative kinematic positioning is difficult to be applied in the polar region of Earth since there is a very sparse distribution of reference stations, while precise point positioning (PPP), using data of a stand-alone receiver, is recognized as a promising tool for obtaining reliable and accurate trajectories of moving platforms. However, PPP and its integer ambiguity fixing performance could be much degraded by satellite orbits and clocks of poor quality, such as those of the geostationary Earth orbit (GEO) satellites of the BeiDou navigation satellite system (BDS), because temporal variation of orbit errors cannot be fully absorbed by ambiguities. To overcome such problems, a network-based processing, referred to as precise orbit positioning (POP), in which the satellite clock offsets are estimated with fixed precise orbits, is implemented in this study. The POP approach is validated in comparison with PPP in terms of integer ambiguity fixing and trajectory accuracy. In a simulation test, multi-GNSS (global navigation satellite system) observations over 14 days from 136 globally distributed MGEX (the multi-GNSS Experiment) receivers are used and four of them on the coast of Antarctica are processed in kinematic mode as moving stations. The results show that POP can improve the ambiguity fixing of all system combinations and significant improvement is found in the solution with BDS, since its large orbit errors are reduced in an integrated adjustment with satellite clock offsets. The four-system GPS+GLONASS+Galileo+BDS (GREC) fixed solution enables the highest 3D position accuracy of about 3.0 cm compared to 4.3 cm of the GPS-only solution. Through a real flight experiment over Antarctica, it is also confirmed that POP ambiguity fixing performs better and thus can considerably speed up (re-)convergence and reduce most of the fluctuations in PPP solutions, since the continuous tracking time is short compared to that in other regions.
机译:传统的相对运动学定位很难在地球的极地应用,因为参考站的分布非常稀疏,而使用独立接收器的数据进行精确点定位(PPP)被认为是一种有前途的工具获得移动平台的可靠和准确的轨迹。但是,PPP和它的整数不确定性修复性能可能会因质量差的卫星轨道和时钟而大大降低,例如北斗导航卫星系统(BDS)的对地静止地球轨道(GEO)卫星的轨道和时钟,因为轨道误差会随时间变化不能被歧义完全吸收。为克服此类问题,本研究实施了基于网络的处理,称为精确轨道定位(POP),其中使用固定的精确轨道估算卫星时钟偏移。与POP相比,POP方法在整数歧义固定和轨迹准确性方面得到了验证。在模拟测试中,使用了来自136个全球分布的MGEX(多GNSS实验)接收器在14天内的多GNSS(全球导航卫星系统)观测结果,其中四个在南极海岸上以运动学方式作为移动站进行了处理。 。结果表明,POP可以改善所有系统组合的不确定性,并且在使用BDS的解决方案中发现了显着的改进,因为通过卫星时钟偏移的集成调整可以减小其大的轨道误差。四系统GPS + GLONASS + Galileo + BDS(GREC)固定解决方案实现了约3.0 cm的最高3D定位精度,而仅GPS的解决方案为4.3 cm。通过对南极洲的一次真实飞行实验,还证实了POP歧义固定性能更好,因此可以大大加快(重新)收敛,并减少PPP解决方案中的大部分波动,因为与之相比,连续跟踪时间短。其他地区。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号