...
首页> 外文期刊>Latin American Journal of Solids and Structures >Influence of the Yield Surface Curvature on the Forming Limit Diagrams Predicted by Crystal Plasticity Theory
【24h】

Influence of the Yield Surface Curvature on the Forming Limit Diagrams Predicted by Crystal Plasticity Theory

机译:屈服面曲率对晶体可塑性理论预测的成形极限图的影响

获取原文
           

摘要

The aim of this paper is to investigate the impact of the microscopic yield surface (i.e., at the single crystal scale) on the forming limit diagrams (FLDs) of face centred cubic (FCC) materials. To predict these FLDs, the bifurcation approach is used within the framework of rate-independent crystal plasticity theory. For this purpose, two micromechanical models are developed and implemented. The first one uses the classical Schmid law, which results in the formation of vertices (or corners) at the yield surface, while the second is based on regularization of the Schmid law, which induces rounded corners at the yield surface. In both cases, the overall macroscopic behavior is derived from the behavior of the microscopic constituents (the single crystals) by using two different scale-transition schemes: the self-consistent approach and the Taylor model. The simulation results show that the use of the classical Schmid law allows predicting localized necking at realistic strain levels for the whole range of strain paths that span the FLD. However, the application of a regularized Schmid law results in much higher limit strains in the range of negative strain paths. Moreover, rounding the yield surface vertices through regularization of the Schmid law leads to unrealistically high limit strains in the range of positive strain paths.
机译:本文的目的是研究微观屈服面(即单晶尺度)对面心立方(FCC)材料的成形极限图(FLD)的影响。为了预测这些FLD,在不依赖速率的晶体可塑性理论的框架内使用了分叉方法。为此,开发并实现了两个微机械模型。第一个使用经典的施密德定律,这导致在屈服面处形成顶点(或角),而第二个基于施密德定律的正则化,从而在屈服面处产生圆角。在这两种情况下,通过使用两种不同的标度转换方案:自洽方法和泰勒模型,可以从微观成分(单晶)的行为中得出整体宏观行为。仿真结果表明,经典的施密德定律的使用允许在跨越FLD的整个应变路径范围内,在实际应变水平下预测局部颈缩。但是,正则化Schmid律的应用会在负应变路径范围内产生更高的极限应变。此外,通过施密特定律的正则化对屈服面顶点进行舍入会导致在正应变路径范围内出现不切实际的高极限应变。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号