首页> 外文期刊>Npj Computational Materials >Effect of nonlinear and noncollinear transformation strain pathways in phase-field modeling of nucleation and growth during martensite transformation
【24h】

Effect of nonlinear and noncollinear transformation strain pathways in phase-field modeling of nucleation and growth during martensite transformation

机译:非线性和非共线转变应变路径在马氏体转变过程中成核和生长相场模拟中的作用

获取原文
       

摘要

The phase-field microelasticity theory has exhibited great capacities in studying elasticity and its effects on microstructure evolution due to various structural and chemical non-uniformities (impurities and defects) in solids. However, the usually adopted linear and/or collinear coupling between eigen transformation strain tensors and order parameters in phase-field microelasticity have excluded many nonlinear transformation pathways that have been revealed in many atomistic calculations. Here we extend phase-field microelasticity by adopting general nonlinear and noncollinear eigen transformation strain paths, which allows for the incorporation of complex transformation pathways and provides a multiscale modeling scheme linking atomistic mechanisms with overall kinetics to better describe solid-state phase transformations. Our case study on a generic cubic to tetragonal martensitic transformation shows that nonlinear transformation pathways can significantly alter the nucleation and growth rates, as well as the configuration and activation energy of the critical nuclei. It is also found that for a pure-shear martensitic transformation, depending on the actual transformation pathway, the nuclei and austenite/martensite interfaces can have nonzero far-field hydrostatic stress and may thus interact with other crystalline defects such as point defects and/or background tension/compression field in a more profound way than what is expected from a linear transformation pathway. Further significance is discussed on the implication of vacancy clustering at austenite/martensite interfaces and segregation at coherent precipitate/matrix interfaces.
机译:由于固体中各种结构和化学的不均匀性(杂质和缺陷),相场微弹性理论在研究弹性及其对微结构演变的影响方面显示出了巨大的能力。然而,在相场微弹性中本征变换应变张量与阶次参数之间通常采用的线性和/或共线耦合排除了许多原子计算中揭示的许多非线性变换路径。在这里,我们通过采用一般的非线性和非共线性本征变换应变路径来扩展相场微弹性,这允许并入复杂的变换路径,并提供了将原子机理与整体动力学联系起来的多尺度建模方案,以更好地描述固态相变。我们对一般的立方到四方马氏体相变的案例研究表明,非线性相变路径可以显着改变成核和生长速率,以及关键核的构型和活化能。还发现,对于纯剪切马氏体相变,取决于实际的相变路径,核和奥氏体/马氏体界面可能具有非零的远场静水应力,因此可能与其他晶体缺陷(例如点缺陷和/或)相互作用背景张力/压缩场比线性转换途径所预期的更深刻。关于空位聚集在奥氏体/马氏体界面和相干析出物/基体界面处的偏析的含义,讨论了进一步的意义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号