首页> 外文期刊>New journal of physics >Overview of the design of the ITER heating neutral beam injectors
【24h】

Overview of the design of the ITER heating neutral beam injectors

机译:ITER加热中性束喷射器的设计概述

获取原文
           

摘要

The heating neutral beam injectors (HNBs) of ITER are designed to deliver 16.7 MW of 1 MeV D0 or 0.87 MeV H0 to the ITER plasma for up to 3600 s. They will be the most powerful neutral beam?(NB) injectors ever, delivering higher energy NBs to the plasma in a tokamak for longer than any previous systems have done. The design of the HNBs is based on the acceleration and neutralisation of negative ions as the efficiency of conversion of accelerated positive ions is so low at the required energy that a realistic design is not possible, whereas the neutralisation of H? and D? remains acceptable (≈56%). The design of a long pulse negative ion based injector is inherently more complicated than that of short pulse positive ion based injectors because: ???negative ions are harder to create so that they can be extracted and accelerated from the ion source; ???electrons can be co-extracted from the ion source along with the negative ions, and their acceleration must be minimised to maintain an acceptable overall accelerator efficiency; ???negative ions are easily lost by collisions with the background gas in the accelerator; ???electrons created in the extractor and accelerator can impinge on the extraction and acceleration grids, leading to high power loads on the grids; ???positive ions are created in the accelerator by ionisation of the background gas by the accelerated negative ions and the positive ions are back-accelerated into the ion source creating a massive power load to the ion source; ???electrons that are co-accelerated with the negative ions can exit the accelerator and deposit power on various downstream beamline components. The design of the ITER HNBs is further complicated because ITER is a nuclear installation which will generate very large fluxes of neutrons and gamma rays. Consequently all the injector components have to survive in that harsh environment. Additionally the beamline components and the NB cell, where the beams are housed, will be activated and all maintenance will have to be performed remotely. This paper describes the design of the HNB injectors, but not the associated power supplies, cooling system, cryogenic system etc, or the high voltage bushing which separates the vacuum of the beamline from the high pressure SF6 of the high voltage (1 MV) transmission line, through which the power, gas and cooling water are supplied to the beam source. Also the magnetic field reduction system is not described.
机译:ITER的加热中性束注入器(HNB)旨在向ITER等离子体输送16.7 MW的1 MeV D0或0.87 MeV H0长达3600 s。它们将成为有史以来功能最强大的中性束(NB)注入器,以比以往任何系统都更长的时间向托卡马克中的等离子体提供更高能量的NB。 HNB的设计基于负离子的加速和中和,因为在所需能量下加速正离子的转换效率非常低,无法进行实际设计,而H 2+的中和则是不可能的。和D?仍可接受(≈56%)。长脉冲负离子基注射器的设计本质上比短脉冲正离子基注射器的设计复杂,这是因为:负离子更难产生,因此可以从离子源中提取和加速。可以将电子与负离子一起从离子源中提取出来,并且必须使它们的加速减至最小,以保持可接受的总加速器效率。负离子很容易与加速器中的背景气体发生碰撞而损失掉;在提取器和加速器中产生的电子会撞击在提取和加速格栅上,从而导致格栅上的高功率负荷;通过加速的负离子使背景气体电离,在加速器中产生正离子,而正离子反加速进入离子源,给离子源带来巨大的功率负载。与负离子共同加速的电子可以离开加速器,并在各种下游束线成分上沉积能量。 ITER HNB的设计更加复杂,因为ITER是一个核装置,它将产生非常大的中子和伽马射线通量。因此,所有喷油器组件都必须在那种恶劣的环境中生存。另外,光束线组件和容纳光束的NB单元将被激活,并且所有维护工作都必须远程进行。本文介绍了HNB喷油器的设计,但未介绍相关的电源,冷却系统,低温系统等,也不是将射束线的真空与高压(1 MV)传输装置的高压SF6分开的高压套管电力,气体和冷却水通过管道输送到光束源。同样,没有描述磁场减小系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号