...
首页> 外文期刊>New journal of physics >Death and rebirth of neural activity in sparse inhibitory networks
【24h】

Death and rebirth of neural activity in sparse inhibitory networks

机译:稀疏抑制网络中神经活动的死亡和重生

获取原文

摘要

Inhibition is a key aspect of neural dynamics playing a fundamental role for the emergence of neural rhythms and the implementation of various information coding strategies. Inhibitory populations are present in several brain structures, and the comprehension of their dynamics is strategical for the understanding of neural processing. In this paper, we clarify the mechanisms underlying a general phenomenon present in pulse-coupled heterogeneous inhibitory networks: inhibition can induce not only suppression of neural activity, as expected, but can also promote neural re-activation. In particular, for globally coupled systems, the number of firing neurons monotonically reduces upon increasing the strength of inhibition (neuronal death). However, the random pruning of connections is able to reverse the action of inhibition, i.e. in a random sparse network a sufficiently strong synaptic strength can surprisingly promote, rather than depress, the activity of neurons (neuronal rebirth). Thus, the number of firing neurons reaches a minimum value at some intermediate synaptic strength. We show that this minimum signals a transition from a regime dominated by neurons with a higher firing activity to a phase where all neurons are effectively sub-threshold and their irregular firing is driven by current fluctuations. We explain the origin of the transition by deriving a mean field formulation of the problem able to provide the fraction of active neurons as well as the first two moments of their firing statistics. The introduction of a synaptic time scale does not modify the main aspects of the reported phenomenon. However, for sufficiently slow synapses the transition becomes dramatic, and the system passes from a perfectly regular evolution to irregular bursting dynamics. In this latter regime the model provides predictions consistent with experimental findings for a specific class of neurons, namely the medium spiny neurons in the striatum.
机译:抑制是神经动力学的关键方面,对神经节律的出现和各种信息编码策略的实施起着至关重要的作用。抑制性种群存在于几个大脑结构中,其动力学的理解对于理解神经加工具有战略意义。在本文中,我们阐明了脉冲耦合异质抑制网络中存在的一般现象的潜在机制:抑制不仅可以像预期的那样诱导神经活动的抑制,而且还可以促进神经再激活。特别是,对于全局耦合系统,激发神经元的数量会随着抑制强度(神经元死亡)的增加而单调减少。然而,随机修剪连接能够逆转抑制作用,即,在随机稀疏网络中,足够强大的突触强度可以令人惊奇地促进而不是抑制神经元的活动(神经再生)。因此,在一些中间突触强度下,发射神经元的数量达到最小值。我们表明,此最小值表示从具有较高放电活动的神经元为主的状态过渡到所有神经元均有效低于阈值且其不规则放电由电流波动驱动的阶段。我们通过得出问题的平均场公式来解释过渡的起源,该问题能够提供活跃神经元的分数以及其放电统计的前两个时刻。突触时标的引入不会改变所报告现象的主要方面。但是,对于足够慢的突触,过渡会变得非常剧烈,并且系统会从完全规则的演化过渡到不规则的爆发动力学。在后一种情况下,该模型提供的预测与特定类神经元(即纹状体中的中棘神经元)的实验结果一致。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号