首页> 外文期刊>Nanoscale Research Letters >Nano-regime Length Scales Extracted from the First Sharp Diffraction Peak in Non-crystalline SiO 2 and Related Materials: Device Applications
【24h】

Nano-regime Length Scales Extracted from the First Sharp Diffraction Peak in Non-crystalline SiO 2 and Related Materials: Device Applications

机译:从非晶SiO 2 及其相关材料的第一个尖锐衍射峰中提取的纳米区域长度尺度:器件应用

获取原文
获取外文期刊封面目录资料

摘要

This paper distinguishes between two different scales of medium range order, MRO, in non-crystalline SiO~(2): (1) the first is ~0.4 to 0.5?nm and is obtained from the position of the first sharp diffraction peak, FSDP, in the X-ray diffraction structure factor, S( Q ), and (2) the second is ~1?nm and is calculated from the FSDP full-width-at-half-maximum FWHM. Many-electron calculations yield Si–O third- and O–O fourth-nearest-neighbor bonding distances in the same 0.4–0.5?nm MRO regime. These derive from the availability of empty Si dπ orbitals for back-donation from occupied O pπ orbitals yielding narrow symmetry determined distributions of third neighbor Si–O, and fourth neighbor O–O distances. These are segments of six member rings contributing to connected six-member rings with ~1?nm length scale within the MRO regime. The unique properties of non-crystalline SiO~(2)are explained by the encapsulation of six-member ring clusters by five- and seven-member rings on average in a compliant hard-soft nano-scaled inhomogeneous network. This network structure minimizes macroscopic strain, reducing intrinsic bonding defects as well as defect precursors. This inhomogeneous CRN is enabling for applications including thermally grown ~1.5?nm SiO~(2)layers for Si field effect transistor devices to optical components with centimeter dimensions. There are qualitatively similar length scales in nano-crystalline HfO~(2)and phase separated Hf silicates based on the primitive unit cell, rather than a ring structure. Hf oxide dielectrics have recently been used as replacement dielectrics for a new generation of Si and Si/Ge devices heralding a transition into nano-scale circuits and systems on a Si chip.
机译:本文在非晶SiO〜(2)中区分了两种不同的中等范围量级MRO:(1)第一个是〜0.4至0.5?nm,是从第一个尖锐衍射峰FSDP的位置获得的,在X射线衍射结构因子S(Q)和(2)中,秒为〜1?nm,由FSDP半峰全宽FWHM计算得出。在相同的0.4-0.5?nm MRO制度下,多电子计算得出Si-O第三和O-O第四近邻键合距离。这些是从空的Sidπ轨道的可利用性得到的,这些空d dπ轨道可用于从被占据的Opπ轨道进行反向捐赠,从而产生狭窄的对称确定的第三邻域Si-O和第四邻域O-O距离分布。这些是六元环的片段,在MRO范围内有助于连接的六元环具有约1?nm的长度尺度。非晶态SiO〜(2)的独特性质是通过在柔顺的纳米纳米尺度不均匀网络中平均用五元环和七元环封装六元环簇来解释的。这种网络结构最大程度地减小了宏观应变,减少了固有的键合缺陷以及缺陷前体。这种不均匀的CRN使得其应用包括将热生长的〜1.5?nm SiO〜(2)层用于Si场效应晶体管器件到具有厘米尺寸的光学组件。基于原始晶胞而不是环结构,纳米晶体HfO〜(2)和相分离的Hf硅酸盐在质量上有相似的长度尺度。 Hf氧化物电介质最近已被用作新一代Si和Si / Ge器件的替代电介质,预示着向Si芯片上的纳米级电路和系统的过渡。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号