首页> 外文期刊>Microbial Cell Factories >Shake flask methodology for assessing the influence of the maximum oxygen transfer capacity on 2,3-butanediol production
【24h】

Shake flask methodology for assessing the influence of the maximum oxygen transfer capacity on 2,3-butanediol production

机译:摇瓶法,用于评估最大氧气传输量对2,3-丁二醇生产的影响

获取原文
           

摘要

Production of 2,3-butanediol from renewable resources is a promising measure to decrease the consumption of fossil resources in the chemical industry. One of the most influential parameters on biotechnological 2,3-butanediol production is the oxygen availability during the cultivation. As 2,3-butanediol is produced under microaerobic process conditions, a well-controlled oxygen supply is the key parameter to control biomass formation and 2,3-butanediol production. As biomass is on the one hand not the final product, but on the other hand the essential biocatalyst, the optimal compromise between biomass formation and 2,3-butanediol production has to be defined. A shake flask methodology is presented to evaluate the effects of oxygen availability on 2,3-butanediol production with Bacillus licheniformis DSM 8785 by variation of the filling volume. A defined two-stage cultivation strategy was developed to investigate the metabolic response to different defined maximum oxygen transfer capacities at equal initial growth conditions. The respiratory quotient was measured online to determine the point of glucose depletion, as 2,3-butanediol is consumed afterwards. Based on this strategy, comparable results to stirred tank reactors were achieved. The highest space–time yield (1.3?g/L/h) and a 2,3-butanediol concentration of 68?g/L combined with low acetoin concentrations and avoided glycerol formation were achieved at a maximum oxygen transfer capacity of 13?mmol/L/h. The highest overall 2,3-butanediol concentration of 78?g/L was observed at a maximum oxygen transfer capacity of 4?mmol/L/h. The presented shake flask approach reduces the experimental effort and costs providing a fast and reliable methodology to investigate the effects of oxygen availability. This can be applied especially on product and by-product formation under microaerobic conditions. Utilization of the maximum oxygen transfer capacity as measure for the oxygen availability allows for an easy adaption to other bioreactor setups and scales.
机译:由可再生资源生产2,3-丁二醇是减少化学工业中化石资源消耗的一种有前途的措施。生物技术2,3-丁二醇生产中最有影响力的参数之一是培养过程中的氧气利用率。由于2,3-丁二醇是在微好氧工艺条件下生产的,因此,良好控制的氧气供应是控制生物质形成和2,3-丁二醇生产的关键参数。由于生物质一方面不是最终产品,而另一方面又是必不可少的生物催化剂,因此必须定义生物质形成与2,3-丁二醇生产之间的最佳折衷方案。提出了摇瓶法,以通过改变填充量来评估地衣芽孢杆菌DSM 8785的氧气供应量对2,3-丁二醇生产的影响。制定了确定的两阶段培养策略,以研究在相同的初始生长条件下对不同的定义的最大氧转移能力的代谢反应。在线测量呼吸商以确定葡萄糖的消耗点,因为之后会消耗掉2,3-丁二醇。基于该策略,获得了与搅拌釜反应器相当的结果。最高时空收率(1.3?g / L / h)和2,3-丁二醇浓度为68?g / L加上较低的乙酰丙酮浓度并避免了甘油的形成,最大氧传递能力为13?mmol /升/小时在最大氧气传输能力为4?mmol / L / h时,观察到最高的2,3-丁二醇总浓度为78?g / L。提出的摇瓶方法减少了实验工作并降低了成本,提供了一种快速可靠的方法来研究氧气供应的影响。这尤其适用于微需氧条件下的产物和副产物形成。利用最大的氧气传输能力作为氧气可用性的量度,可以轻松适应其他生物反应器的设置和规模。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号