首页> 外文期刊>Microbial Cell Factories >Development of a GIN11/FRT-based multiple-gene integration technique affording inhibitor-tolerant, hemicellulolytic, xylose-utilizing abilities to industrial Saccharomyces cerevisiae strains for ethanol production from undetoxified lignocellulosic hemicelluloses
【24h】

Development of a GIN11/FRT-based multiple-gene integration technique affording inhibitor-tolerant, hemicellulolytic, xylose-utilizing abilities to industrial Saccharomyces cerevisiae strains for ethanol production from undetoxified lignocellulosic hemicelluloses

机译:基于GIN11 / FRT的多基因整合技术的开发,可为工业酿酒酵母菌株提供耐抑制剂,半纤维素分解,木糖利用的能力,以从未经过氧化的木质纤维素半纤维素生产乙醇

获取原文
           

摘要

Background Bioethanol produced by the yeast Saccharomyces cerevisiae is currently one of the most promising alternatives to conventional transport fuels. Lignocellulosic hemicelluloses obtained after hydrothermal pretreatment are important feedstock for bioethanol production. However, hemicellulosic materials cannot be directly fermented by yeast: xylan backbone of hemicelluloses must first be hydrolyzed by heterologous hemicellulases to release xylose, and the yeast must then ferment xylose in the presence of fermentation inhibitors generated during the pretreatment. Results A GIN11/FRT-based multiple-gene integration system was developed for introducing multiple functions into the recombinant S. cerevisiae strains engineered with the xylose metabolic pathway. Antibiotic markers were efficiently recycled by a novel counter selection strategy using galactose-induced expression of both FLP recombinase gene and GIN11 flanked by FLP recombinase recognition target (FRT) sequences. Nine genes were functionally expressed in an industrial diploid strain of S. cerevisiae: endoxylanase gene from Trichoderma reesei, xylosidase gene from Aspergillus oryzae, β-glucosidase gene from Aspergillus aculeatus, xylose reductase and xylitol dehydrogenase genes from Scheffersomyces stipitis, and XKS1, TAL1, FDH1 and ADH1 variant from S. cerevisiae. The genes were introduced using the homozygous integration system and afforded hemicellulolytic, xylose-assimilating and inhibitor-tolerant abilities to the strain. The engineered yeast strain demonstrated 2.7-fold higher ethanol titer from hemicellulosic material than a xylose-assimilating yeast strain. Furthermore, hemicellulolytic enzymes displayed on the yeast cell surface hydrolyzed hemicelluloses that were not hydrolyzed by a commercial enzyme, leading to increased sugar utilization for improved ethanol production. Conclusions The multifunctional yeast strain, developed using a GIN11/FRT-based marker recycling system, achieved direct conversion of hemicellulosic biomass to ethanol without the addition of exogenous hemicellulolytic enzymes. No detoxification processes were required. The multiple-gene integration technique is a powerful approach for introducing and improving the biomass fermentation ability of industrial diploid S. cerevisiae strains.
机译:背景技术由酿酒酵母(Saccharomyces cerevisiae)产生的生物乙醇目前是常规运输燃料的最有希望的替代品之一。水热预处理后获得的木质纤维素半纤维素是生产生物乙醇的重要原料。然而,半纤维素材料不能被酵母直接发酵:半纤维素的木聚糖主链必须首先被异源半纤维素酶水解以释放木糖,然后酵母必须在预处理过程中产生的发酵抑制剂存在下发酵木糖。结果开发了一种基于GIN11 / FRT的多基因整合系统,以将多种功能引入以木糖代谢途径改造的重组酿酒酵母菌株中。通过半乳糖诱导的FLP重组酶基因和侧接FLP重组酶识别靶标(FRT)序列的GIN11的新型反选择策略,可以有效地回收抗生素标记。在酿酒酵母的工业二倍体菌株中功能性表达了9个基因:里氏木霉的内切木聚糖酶基因,米曲霉的木糖苷酶基因,刺曲霉的β-葡萄糖苷酶基因,木糖还原酶和木糖醇脱氢酶基因(Schefferomyces stipitis),XTAL1,来自酿酒酵母的FDH1和ADH1变体。使用纯合整合系统引入基因,并为该菌株提供半纤维素分解,木糖同化和抑制剂耐受的能力。经工程改造的酵母菌株证明,半纤维素材料的乙醇滴度比吸收木糖的酵母菌株高2.7倍。此外,展示在酵母细胞表面上的半纤维素水解酶水解了未被商业酶水解的半纤维素,导致糖利用增加,从而改善了乙醇的生产。结论使用基于GIN11 / FRT的标记物回收系统开发的多功能酵母菌株无需添加外源半纤维素分解酶即可将半纤维素生物质直接转化为乙醇。不需要排毒过程。多基因整合技术是引入和提高工业二倍体酿酒酵母菌株的生物质发酵能力的有力方法。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号