...
首页> 外文期刊>Microbial Cell Factories >Surface display of ACC deaminase on endophytic Enterobacteriaceae strains to increase saline resistance of host rice sprouts by regulating plant ethylene synthesis
【24h】

Surface display of ACC deaminase on endophytic Enterobacteriaceae strains to increase saline resistance of host rice sprouts by regulating plant ethylene synthesis

机译:ACC脱氨酶在内生肠杆菌科细菌菌株上的表面展示,通过调节植物乙烯的合成来增加寄主稻芽的耐盐性

获取原文
           

摘要

Most endophytic bacteria in consortia, which provide robust and broad metabolic capacity, are attractive for applications in plant metabolic engineering. The aim of this study was to investigate the effects of engineered endophytic bacterial strains on rice sprout ethylene level and growth under saline stress. A protocol was developed to synthesize engineered strains by expressing bacterial 1-aminocyclopropane-1-carboxylate (ACC) deaminase gene on cells of endophytic Enterobacter sp. E5 and Kosakonia sp. S1 (denoted as E5P and S1P, respectively). Results showed that ACC deaminase activities of the engineered strains E5P and S1P were significantly higher than those of the wild strains E5 and S1. About 32–41% deaminase was expressed on the surface of the engineered strains. Compared with the controls without inoculation, inoculation with the wild and engineered strains increased the deaminase activities of sprouts. Inoculation with the engineered strains increased 15–21% more deaminase activities of sprouts than with the wild strains, and reduced the ethylene concentrations of sprouts more significantly than with wild strains (P?
机译:财团中的大多数内生细菌具有强大而广泛的代谢能力,因此在植物代谢工程中的应用很有吸引力。这项研究的目的是研究工程内生细菌菌株对盐胁迫下水稻发芽乙烯水平和生长的影响。通过在内生肠杆菌属细菌的细胞上表达细菌1-氨基环丙烷-1-羧酸(ACC)脱氨酶基因,开发了一种合成工程菌株的方案。 E5和Kosakonia sp。 S1(分别表示为E5P和S1P)。结果表明,工程菌株E5P和S1P的ACC脱氨酶活性显着高于野生菌株E5和S1。在工程菌株的表面表达了约32–41%的脱氨酶。与没有接种的对照相比,用野生和工程菌株接种增加了芽的脱氨酶活性。与野生菌株相比,用工程菌株接种的芽苗的脱氨酶活性提高了15-21%,并且降低了芽中乙烯的浓度(P <0.05)。野生和工程菌株的接种促进了芽的生长,而与野生菌株相比,工程菌株的促进作用更深。在盐浓度从10到25微克/升L-1的条件下,工程菌株提高了豆芽的耐盐性。在盐胁迫下,与野生菌株相比,工程菌株能促进更长的根和芽生长,这表明内生细菌细胞上的ACC脱氨酶可能导致植物产生的ACC降解并抑制植物乙烯的形成。在内生细菌细胞上表达酶的方案显示出比植物过量表达的酶更大的潜力,以增加植物代谢途径的效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号