...
首页> 外文期刊>mSystems >Holistic Assessment of Rumen Microbiome Dynamics through Quantitative Metatranscriptomics Reveals Multifunctional Redundancy during Key Steps of Anaerobic Feed Degradation
【24h】

Holistic Assessment of Rumen Microbiome Dynamics through Quantitative Metatranscriptomics Reveals Multifunctional Redundancy during Key Steps of Anaerobic Feed Degradation

机译:通过定量转录组学对瘤胃微生物组动力学进行整体评估,揭示了厌氧饲料降解关键步骤中的多功能冗余。

获取原文
           

摘要

Ruminant livestock is a major source of the potent greenhouse gas methane. The complex rumen microbiome, consisting of bacteria, archaea, and microbial eukaryotes, facilitates anaerobic plant biomass degradation in the cow rumen, leading to methane emissions. Using an integrated approach combining multidomain quantitative metatranscriptomics with gas and volatile fatty acid (VFA) profiling, we aimed at obtaining the most comprehensive picture of the active rumen microbiome during feed degradation to date. Bacterial, archaeal, and eukaryotic biomass, but also methane emissions and VFA concentrations, increased drastically within an hour after feed intake. mRNA profiling revealed a dynamic response of carbohydrate-active enzyme transcripts, transcripts involved in VFA production and methanogenesis. While the relative abundances of functional transcripts did not mirror observed processes, such as methane emissions, transformation to mRNA abundance per gram of rumen fluid echoed ruminant processes. The microbiome composition was highly individual, with, e.g., ciliate, Neocallimastigaceae , Prevotellaceae , Succinivibrionaceae , and Fibrobacteraceae abundances differing between cows. Microbiome individuality was accompanied by inter- and intradomain multifunctional redundancy among microbiome members during feed degradation. This likely enabled the robust performance of the anaerobic degradation process in each rumen. Neocallimastigaceae and ciliates contributed an unexpectedly large share of transcripts for cellulose- and hemicellulose-degrading enzymes, respectively. Methyl-reducing but not CO2-reducing methanogens were positively correlated with methane emissions. While Methanomassiliicoccales switched from methanol to methylamines as electron acceptors, Methanosphaera became the dominating methanol-reducing methanogen. This study for the first time linked rumen meta-omics with processes and enabled holistic insights into the contribution of all microbiome members to feed degradation. IMPORTANCE Ruminant animals, such as cows, live in a tight symbiotic association with microorganisms, allowing them to feed on otherwise indigestible plant biomass as food sources. Methane is produced as an end product of the anaerobic feed degradation in ruminants and is emitted to the atmosphere, making ruminant animals among the major anthropogenic sources of the potent greenhouse gas methane. Using newly developed quantitative metatranscriptomics for holistic microbiome analysis, we here identified bacterial, archaeal, and eukaryotic key players and the short-term dynamics of the rumen microbiome during anaerobic plant biomass degradation and subsequent methane emissions. These novel insights might pave the way for novel ecologically and economically sustainable methane mitigation strategies, much needed in times of global climate change.
机译:反刍家畜是有效的温室气体甲烷的主要来源。复杂的瘤胃微生物组,由细菌,古细菌和微生物真核生物组成,可促进牛瘤胃中厌氧性植物生物量的降解,导致甲烷排放。使用一种结合了多域定量元转录组学与气体和挥发性脂肪酸(VFA)谱图的集成方法,我们旨在获得迄今为止饲料降解过程中活性瘤胃微生物组的最全面图像。采食后一小时内,细菌,古细菌和真核生物量以及甲烷排放量和VFA浓度急剧增加。 mRNA谱分析揭示了碳水化合物活性酶转录物的动态响应,该转录物涉及VFA产生和甲烷生成。尽管功能性转录本的相对丰度未反映观察到的过程(例如甲烷排放),但每克瘤胃液向mRNA丰度的转化回响了反刍动物的过程。微生物组的组成是高度个体的,例如,在母牛之间,纤毛虫,新Callistiastigaceae,Pretelltellaceae,Succinivibrionaceae和Fibrobacteraceae的丰度不同。在饲料降解过程中,微生物组个体伴随着微生物组成员之间的域间和域内多功能冗余。这可能使每个瘤胃中的厌氧降解过程具有强大的性能。新愈伤科和纤毛虫分别贡献了纤维素和半纤维素降解酶的大量转录本。减少甲烷但不减少CO 2 的产甲烷菌与甲烷排放量呈正相关。当甲烷甲烷菌从甲醇转变为甲胺作为电子受体时,甲烷八面体已成为减少甲醇的主要产甲烷菌。这项研究首次将瘤胃基因组学与过程联系在一起,并全面了解了所有微生物组成员对饲料降解的贡献。重要信息反刍动物(如牛)与微生物紧密共生,使它们能够以原本无法消化的植物生物质为食。甲烷是反刍动物厌氧饲料降解的最终产物,并排放到大气中,使反刍动物成为温室气体中主要的人为来源。使用新开发的定量元转录组学技术进行整体微生物组分析,我们在此确定了细菌,古细菌和真核生物的关键角色,以及厌氧植物生物量降解和随后甲烷排放过程中瘤胃微生物组的短期动态。这些新颖的见解可能为新型的生态和经济上可持续的甲烷减缓战略铺平道路,这是全球气候变化时期急需的。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号