...
首页> 外文期刊>Molecular Plant-Microbe Interactions >Multiplicity of Sulfate and Molybdate Transporters and Their Role in Nitrogen Fixation in Rhizobium leguminosarum bv. viciae Rlv3841
【24h】

Multiplicity of Sulfate and Molybdate Transporters and Their Role in Nitrogen Fixation in Rhizobium leguminosarum bv. viciae Rlv3841

机译:硫酸根和钼酸根转运蛋白的多样性及其在豆科根瘤菌固氮中的作用。蚕豆Rlv3841

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Rhizobium leguminosarum Rlv3841 contains at least three sulfate transporters, i.e., SulABCD, SulP1 and SulP2, and a single molybdate transporter, ModABC. SulABCD is a high-affinity transporter whose mutation prevented growth on a limiting sulfate concentration, while SulP1 and SulP2 appear to be low-affinity sulfate transporters. ModABC is the sole high-affinity molybdate transport system and is essential for growth with NO3? as a nitrogen source on limiting levels of molybdate (<0.25 μM). However, at 2.5 μM molybdate, a quadruple mutant with all four transporters inactivated, had the longest lag phase on NO3?, suggesting these systems all make some contribution to molybdate transport. Growth of Rlv3841 on limiting levels of sulfate increased sulB, sulP1, modB, and sulP2 expression 313.3-, 114.7-, 6.2-, and 4.0-fold, respectively, while molybdate starvation increased only modB expression (three- to 7.5-fold). When grown in high-sulfate but not low-sulfate medium, pea plants inoculated with LMB695 (modB) reduced acetylene at only 14% of the wild-type rate, and this was not further reduced in the quadruple mutant. Overall, while modB is crucial to nitrogen fixation at limiting molybdate levels in the presence of sulfate, there is an unidentified molybdate transporter also capable of sulfate transport. Copyright ? 2016 The Author(s). This is an open access article distributed under the CC BY Attribution 4.0 International license.
机译:豆科根瘤菌Rlv3841包含至少三个硫酸盐转运蛋白,即SulABCD,SulP1和SulP2,以及单个钼酸盐转运蛋白,ModABC。 SulABCD是一种高亲和力转运蛋白,其突变阻止了在极限硫酸盐浓度下的生长,而SulP1和SulP2似乎是低亲和力硫酸盐转运蛋白。 ModABC是唯一的高亲和力钼酸盐转运系统,并且对于NO3的生长必不可少?作为限制钼酸盐含量(<0.25μM)的氮源。然而,在2.5μM钼酸盐下,所有四个转运蛋白均失活的四重突变体对NO3α的滞后时间最长,这表明这些系统都对钼酸盐的转运做出了贡献。 Rlv3841在硫酸盐的限制水平上的生长分别使sulB,sulP1,modB和sulP2的表达分别增加313.3-,114.7-,6.2-和4.0倍,而钼酸盐饥饿仅增加了modB的表达(三至7.5倍)。当在高硫酸盐培养基而不是低硫酸盐培养基中生长时,接种LMB695(modB)的豌豆植物仅以野生型比率的14%还原乙炔,而在四重突变体中,乙炔并没有进一步降低。总体而言,尽管modB对于在硫酸盐存在下限制钼酸盐含量的固氮至关重要,但还有一个未确定的钼酸盐转运蛋白也能够进行硫酸盐转运。版权? 2016作者。这是在CC BY Attribution 4.0 International许可下分发的开放访问文章。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号